scholarly journals Protein B5 is required on extracellular enveloped vaccinia virus for repulsion of superinfecting virions

2012 ◽  
Vol 93 (9) ◽  
pp. 1876-1886 ◽  
Author(s):  
Virginie Doceul ◽  
Michael Hollinshead ◽  
Adrien Breiman ◽  
Kathlyn Laval ◽  
Geoffrey L. Smith

Vaccinia virus (VACV) spreads across cell monolayers fourfold faster than predicted from its replication kinetics. Early after infection, infected cells repulse some superinfecting extracellular enveloped virus (EEV) particles by the formation of actin tails from the cell surface, thereby causing accelerated spread to uninfected cells. This strategy requires the expression of two viral proteins, A33 and A36, on the surface of infected cells and upon contact with EEV this complex induces actin polymerization. Here we have studied this phenomenon further and investigated whether A33 and A36 expression in cell lines causes an increase in VACV plaque size, whether these proteins are able to block superinfection by EEV, and which protein(s) on the EEV surface are required to initiate the formation of actin tails from infected cells. Data presented show that VACV plaque size was not increased by expression of A33 and A36, and these proteins did not block entry of the majority of EEV binding to these cells. In contrast, expression of proteins A56 and K2 inhibited entry of both EEV and intracellular mature virus. Lastly, VACV protein B5 was required on EEV to induce the formation of actin tails at the surface of cells expressing A33 and A36, and B5 short consensus repeat 4 is critical for this induction.

2002 ◽  
Vol 83 (1) ◽  
pp. 195-207 ◽  
Author(s):  
Henriette van Eijl ◽  
Michael Hollinshead ◽  
Gaener Rodger ◽  
Wei-Hong Zhang ◽  
Geoffrey L. Smith

The vaccinia virus (VV) F12L gene encodes a 65 kDa protein that is expressed late during infection and is important for plaque formation, EEV production and virulence. Here we have used a recombinant virus (vF12LHA) in which the F12L protein is tagged at the C terminus with an epitope recognized by a monoclonal antibody to determine the location of F12L in infected cells and whether it associates with virions. Using confocal and electron microscopy we show that the F12L protein is located on intracellular enveloped virus (IEV) particles, but is absent from immature virions (IV), intracellular mature virus (IMV) and cell-associated enveloped virus (CEV). In addition, F12L shows co-localization with endosomal compartments and microtubules. F12L did not co-localize with virions attached to actin tails, providing further evidence that actin tails are associated with CEV but not IEV particles. In vΔF12L-infected cells, virus morphogenesis was arrested after the formation of IEV particles, so that the movement of these virions to the cell surface was inhibited and CEV particles were not found. Previously, virus mutants lacking IEV- or EEV-specific proteins were either unable to make IEV particles (vΔF13L and vΔB5R), or were unable to form actin tails after formation of CEV particles (vΔA36R, vΔA33R, vΔA34R). The F12L deletion mutant therefore defines a new stage in the morphogenic pathway and the F12L protein is implicated as necessary for microtubule-mediated egress of IEV particles to the cell surface.


2002 ◽  
Vol 76 (22) ◽  
pp. 11637-11644 ◽  
Author(s):  
Ehud Katz ◽  
Elizabeth Wolffe ◽  
Bernard Moss

ABSTRACT The spread of most strains of vaccinia virus in cell monolayers occurs predominantly via extracellular enveloped virions that adhere to the tips of actin-containing microvilli and to a lesser extent via diffusion of released virions. The mechanism by which virions adhere to the cell surface is unknown, although several viral proteins may be involved. The present investigation was initiated with the following premise: spontaneous mutations that increase virus release will be naturally selected by propagating a virus unable to spread by means of actin tails. Starting with an A36R deletion mutant that forms small, round plaques, five independent virus clones with enhanced spread due to the formation of comet or satellite plaques were isolated. The viral membrane glycoprotein genes of the isolates were sequenced; four had mutations causing C-terminal truncations of the A33R protein, and one had a serine replacing proline 189 of the B5R protein. The comet-forming phenotype was specifically reproduced or reversed by homologous recombination using DNA containing the mutated or natural sequence, respectively. Considerably more extracellular enveloped virus was released into the medium by the second-site mutants than by the parental A36R deletion mutant, explaining their selection in tissue culture as well as their comet-forming phenotype. The data suggest that the B5R protein and the C-terminal region of the A33R protein are involved in adherence of cell-associated enveloped virions to cells. In spite of their selective advantage in cultured cells, the second-site mutants were not detectably more virulent than the A36R deletion mutant when administered to mice by the intranasal route.


2006 ◽  
Vol 80 (17) ◽  
pp. 8402-8410 ◽  
Author(s):  
Ruzan A. Izmailyan ◽  
Cheng-Yen Huang ◽  
Shamim Mohammad ◽  
Stuart N. Isaacs ◽  
Wen Chang

ABSTRACT The vaccinia virus G3L/WR079 gene encodes a conserved protein with a predicted transmembrane domain. Our proteomic analyses of vaccinia virus revealed that G3L protein is incorporated into intracellular mature virus; however, the function of G3L protein in the vaccinia virus life cycle has not been investigated. In this study, a recombinant vaccinia virus, viG3L, expressing G3L protein under IPTG (isopropyl-β-d-thiogalactopyranoside) regulation was constructed. Under permissive conditions when G3L protein was expressed, the vaccinia virus life cycle proceeded normally, resulting in plaque formation in BSC40 cells. In contrast, under nonpermissive conditions when G3L protein expression was repressed, no plaques were formed, showing that G3L protein is essential for vaccinia virus growth in cell cultures. In infected cells when G3L protein was not expressed, the formation of intracellular mature virus (IMV) and cell-associated enveloped virus occurred normally, showing that G3L protein is not required for virion morphogenesis. IMV particles containing (G3L+) or lacking (G3L−) G3L protein were purified and were found to be indistinguishable on microscopic examination. Both G3L+ and G3L− IMV bound to HeLa cells; however, G3L− IMV failed to enter the cells, showing that G3L protein is required for IMV penetration into cells. Finally, G3L protein was required for fusion of the infected cells under low-pH treatment. Thus, our results provide direct evidence that G3L is an essential component of the vaccinia virus fusion complex, in addition to the previously reported A28, H2, L5, A21, and A16 proteins.


2001 ◽  
Vol 82 (5) ◽  
pp. 1199-1213 ◽  
Author(s):  
Elizabeth C. Mathew ◽  
Christopher M. Sanderson ◽  
Ruth Hollinshead ◽  
Geoffrey L. Smith

A mutational analysis of the vaccinia virus (VV) B5R protein is presented. This protein is related to the regulators of complement activation (RCA) superfamily, has four short consensus repeats (SCRs) that are typical of this superfamily and is present on extracellular enveloped virus (EEV) particles. Here we have constructed VV mutants in which the cytoplasmic tail (CT) of the B5R protein is progressively truncated, and domains of the B5R protein [the SCR (short consensus repeat) domains, the transmembrane anchor region or the CT] are substituted by corresponding domains from the VV haemagglutinin (HA), another EEV protein. Analysis of these mutant viruses showed that loss of the B5R CT did not affect the formation of intracellular enveloped virus (IEV), actin tails, EEV or virus plaque size. However, if the SCR domains of the B5R protein were replaced by the corresponding region of the HA, the virus plaque size was diminished, the formation of actin tails was decreased severely and the titre of infectious EEV released from cells was reduced approximately 25-fold compared to wild-type virus and 5-fold compared to a virus lacking the entire B5R gene. Thus the linkage of HA to the B5R transmembrane and CT is deleterious for the formation and release of EEV and for cell-to-cell virus spread. In contrast, deletion or substitution of the B5R CT did not affect virus replication, although the amount of cell surface B5R was reduced compared to control.


2013 ◽  
Vol 94 (4) ◽  
pp. 720-725 ◽  
Author(s):  
Adrien Breiman ◽  
David C. J. Carpentier ◽  
Helen A. Ewles ◽  
Geoffrey L. Smith

Vaccinia virus (VACV) has two infectious forms called intracellular mature virus and extracellular enveloped virus (EEV). Two of the seven viral proteins in the EEV outer envelope, A33 and A34, are type II membrane glycoproteins that each interact with another EEV protein called B5; however, evidence for direct A33–A34 interaction is lacking. The localization and stability of A34 is affected by B5 and here data are presented showing that A34 is also affected by A33. In the absence of A33, just as without B5, the level, localization and glycosylation profile of A34 was altered. However, the glycosylation profile of A34 without A33 is different to that observed in the absence of B5, and A34 accumulates in the Golgi apparatus rather than in the endoplasmic reticulum. Thus, A34 requires more than one other EEV protein for its processing and cellular transport.


2000 ◽  
Vol 11 (7) ◽  
pp. 2497-2511 ◽  
Author(s):  
Jacomine Krijnse Locker ◽  
Annett Kuehn ◽  
Sibylle Schleich ◽  
Gaby Rutter ◽  
Heinrich Hohenberg ◽  
...  

The simpler of the two infectious forms of vaccinia virus, the intracellular mature virus (IMV) is known to infect cells less efficiently than the extracellular enveloped virus (EEV), which is surrounded by an additional, TGN-derived membrane. We show here that when the IMV binds HeLa cells, it activates a signaling cascade that is regulated by the GTPase rac1 and rhoA, ezrin, and both tyrosine and protein kinase C phosphorylation. These cascades are linked to the formation of actin and ezrin containing protrusions at the plasma membrane that seem to be essential for the entry of IMV cores. The identical cores of the EEV also appear to enter at the cell surface, but surprisingly, without the need for signaling and actin/membrane rearrangements. Thus, in addition to its known role in wrapping the IMV and the formation of intracellular actin comets, the membrane of the EEV seems to have evolved the capacity to enter cells silently, without a need for signaling.


2009 ◽  
Vol 90 (11) ◽  
pp. 2604-2608 ◽  
Author(s):  
Joan E. Adamo ◽  
Clement A. Meseda ◽  
Jerry P. Weir ◽  
Michael J. Merchlinsky

Vaccination with Dryvax elicits a broad humoral response against many viral proteins. Human vaccinia immune globulin was used to screen the secreted proteins from cells infected with Dryvax or the candidate smallpox vaccine LC16m8 to determine whether the protective humoral response included antibodies against secreted viral proteins. Many proteins were detected, with the primary band corresponding to a band of 28 or 30 kDa in cells infected with Dryvax or LC16m8, respectively. This was identified as the vaccinia virus complement protein (VCP), which migrated more slowly in LC16m8-infected cells due to post-translational glycosylation. Vaccinia virus deleted in VCP, vVCPko, protected mice from a lethal intranasal challenge of vaccinia Western Reserve strain. Mice vaccinated with purified VCP demonstrated a strong humoral response, but were not protected against a moderate lethal challenge of vaccinia virus, suggesting that the humoral response against VCP is not critical for protection.


2000 ◽  
Vol 74 (21) ◽  
pp. 10063-10073 ◽  
Author(s):  
Barbara G. Klupp ◽  
Harald Granzow ◽  
Thomas C. Mettenleiter

ABSTRACT Primary envelopment of several herpesviruses has been shown to occur by budding of intranuclear capsids through the inner nuclear membrane. By subsequent fusion of the primary envelope with the outer nuclear membrane, capsids are released into the cytoplasm and gain their final envelope by budding into vesicles in thetrans-Golgi area. We show here that the product of the UL34 gene of pseudorabies virus, an alphaherpesvirus of swine, is localized in transfected and infected cells in the nuclear membrane. It is also detected in the envelope of virions in the perinuclear space but is undetectable in intracytoplasmic and extracellular enveloped virus particles. Conversely, the tegument protein UL49 is present in mature virus particles and absent from perinuclear virions. In the absence of the UL34 protein, acquisition of the primary envelope is blocked and neither virus particles in the perinuclear space nor intracytoplasmic capsids or virions are observed. However, light particles which label with the anti-UL49 serum are formed in the cytoplasm. We conclude that the UL34 protein is required for primary envelopment, that the primary envelope is biochemically different from the final envelope in that it contains the UL34 protein, and that perinuclear virions lack the tegument protein UL49, which is present in mature virions. Thus, we provide additional evidence for a two-step envelopment process in herpesviruses.


2008 ◽  
Vol 82 (20) ◽  
pp. 10079-10087 ◽  
Author(s):  
Roza Izmailyan ◽  
Wen Chang

ABSTRACT The vaccinia virus WR53.5L/F14.5L gene encodes a small conserved protein that was not detected previously. However, additional proteomic analyses of different vaccinia virus isolates and strains revealed that the WR53.5 protein was incorporated into intracellular mature virus (IMV). The WR53.5 protein contains a putative N-terminal transmembrane region and a short C-terminal region. Protease digestion removed the C terminus of WR53.5 protein from IMV particles, suggesting a similar topology to that of the IMV type II transmembrane protein. We generated a recombinant vaccinia virus, vi53.5L, that expressed WR53.5 protein under isopropyl-β-d-thiogalactopyranoside (IPTG) regulation and found that the vaccinia virus life cycle proceeded normally with or without IPTG, suggesting that WR53.5 protein is not essential for vaccinia virus growth in cell cultures. Interestingly, the C-terminal region of WR53.5 protein was exposed on the cell surface of infected cells and mediated calcium-independent cell adhesion. Finally, viruses with inactivated WR53.5L gene expression exhibited reduced virulence in mice when animals were inoculated intranasally, demonstrating that WR53.5 protein was required for virus virulence in vivo. In summary, we identified a new vaccinia IMV envelope protein, WR53.5, that mediates cell adhesion and is important for virus virulence in vivo.


1999 ◽  
Vol 73 (4) ◽  
pp. 2863-2875 ◽  
Author(s):  
Sabine Röttger ◽  
Friedrich Frischknecht ◽  
Inge Reckmann ◽  
Geoffrey L. Smith ◽  
Michael Way

ABSTRACT The intracellular enveloped form of vaccinia virus (IEV) induces the formation of actin tails that are strikingly similar to those seen in Listeria and Shigella infections. In contrast to the case for Listeria and Shigella, the vaccinia virus protein(s) responsible for directly initiating actin tail formation remains obscure. However, previous studies with recombinant vaccinia virus strains have suggested that the IEV-specific proteins A33R, A34R, A36R, B5R, and F13L play an undefined role in actin tail formation. In this study we have sought to understand how these proteins, all of which are predicted to have small cytoplasmic domains, are involved in IEV assembly and actin tail formation. Our data reveal that while deletion of A34R, B5R, or F13L resulted in a severe reduction in IEV particle assembly, IEVs formed by the ΔB5R and ΔF13L deletion strains, but not ΔA34R, were still able to induce actin tails. The ΔA36R deletion strain produced normal amounts of IEV particles, although these were unable to induce actin tails. Using several different approaches, we demonstrated that A36R is a type Ib membrane protein with a large, 195-amino-acid cytoplasmic domain exposed on the surface of IEV particles. Finally, coimmunoprecipitation experiments demonstrated that A36R interacts with A33R and A34R but not with B5R and that B5R forms a complex with A34R but not with A33R or A36R. Using extracts from ΔA34R- and ΔA36R-infected cells, we found that the interaction of A36R with A33R and that of A34R with B5R are independent of A34R and A36R, respectively. We conclude from our observations that multiple interactions between IEV membrane proteins exist which have important implications for IEV assembly and actin tail formation. Furthermore, these data suggest that while A34R is involved in IEV assembly and organization, A36R is critical for actin tail formation.


Sign in / Sign up

Export Citation Format

Share Document