scholarly journals Divergent Requirements for the MAPKERK Signal Transduction Pathway during Initial Virus Infection of Quiescent Primary B Cells and Disruption of Epstein-Barr Virus Latency by Phorbol Esters

1999 ◽  
Vol 73 (10) ◽  
pp. 8913-8916 ◽  
Author(s):  
Mandy Fenton ◽  
Alison J. Sinclair

ABSTRACT Quiescent primary B lymphocytes and Epstein-Barr virus (EBV)-immortalized lymphoblastoid cell lines express components of the extracellular response kinase arm of the mitogen-activated protein kinase (MAPKERK) signal transduction pathway and transmit signals through the pathway when exposed to appropriate stimuli. Although the MAPKERK pathway is activated following infection with EBV, MAPK/ERK kinase (MEK1) activity is not required to drive the proliferation of infected cells. However, MEK1 contributes to EBV latency control.

2008 ◽  
Vol 89 (10) ◽  
pp. 2437-2446 ◽  
Author(s):  
Yu-Hsiu Lee ◽  
Ya-Fang Chiu ◽  
Wen-Hung Wang ◽  
Li-Kwan Chang ◽  
Shih-Tung Liu

BRCA1-associated protein 2 (BRAP2) is known to interact with the kinase suppressor of Ras 1 (KSR1), inhibiting the ERK signal transduction cascade. This study found that an Epstein–Barr virus (EBV) immediate-early protein, Rta, is a binding partner of BRAP2 in yeast and confirmed the binding in vitro by a glutathione S-transferase pull-down assay and in vivo by co-immunoprecipitation in 293(maxi-EBV) cells. Binding studies also showed that Rta and KSR1 interacted with the C-terminal 202 aa region in BRAP2. Additionally, Rta appeared to prevent the binding of KSR1 to BRAP2, activating the ERK signal transduction pathway and the transcription of an EBV immediate-early gene, BZLF1. Activation of the ERK signal transduction pathway by Rta may be critical for the maintenance of the lytic state of EBV.


2015 ◽  
Vol 90 (2) ◽  
pp. 1129-1138 ◽  
Author(s):  
XueQiao Liu ◽  
Jeffrey I. Cohen

ABSTRACTEpstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus associated with both B cell and epithelial cell malignancies. EBV infection of B cells triggers activation of several signaling pathways that are critical for cell survival, virus latency, and growth transformation. To identify EBV proteins important for regulating cell signaling, we used a proteomic approach to screen viral proteins for AP-1 and NF-κB promoter activity in AP-1– and NF-κB–luciferase reporter assays. We found that EBV BGLF2 activated AP-1 but not NF-κB reporter activity. Expression of EBV BGLF2 in cells activated p38 and c-Jun N-terminal kinase (JNK), both of which are important for mitogen-activated protein kinase (MAPK) signaling. Deletion of the carboxyl-terminal 66 amino acids of BGLF2 reduced the ability of BGLF2 to activate JNK and p38. Expression of BGLF2 enhanced BZLF1 expression in latently EBV-infected lymphoblastoid cell lines, and knockdown of BGLF2 reduced EBV reactivation induced by IgG cross-linking. Expression of BGLF2 induced BZLF1 expression and virus production in EBV-infected gastric carcinoma cells. BGLF2 enhanced BZLF1 expression and EBV production by activating p38; chemical inhibition of p38 and MAPK/ERK kinases 1 and 2 (MEK1/2) reduced expression of BZLF1 and virus production induced by BGLF2. In summary, the EBV tegument protein BGLF2, which is delivered to the cell at the onset of virus infection, activates the AP-1 pathway and enhances EBV reactivation and virus production.IMPORTANCEEpstein-Barr virus (EBV) is associated with both B cell and epithelial cell malignancies, and the virus activates multiple signaling pathways important for its persistence in latently infected cells. We identified a viral tegument protein, BGLF2, which activates members of the mitogen-activated protein kinase signaling pathway. Expression of BGLF2 increased expression of EBV BZLF1, which activates a switch from latent to lytic virus infection, and increased production of EBV. Inhibition of BGFL2 expression or inhibition of p38/MAPK, which is activated by BGLF2, reduced virus reactivation from latency. These results indicate that a viral tegument protein which is delivered to cells upon infection activates signaling pathways to enhance virus production and facilitate virus reactivation from latency.


1993 ◽  
Vol 13 (9) ◽  
pp. 5659-5669 ◽  
Author(s):  
M Tyers ◽  
B Futcher

In the yeast Saccharomyces cerevisiae, the Cdc28 protein kinase controls commitment to cell division at Start, but no biologically relevant G1-phase substrates have been identified. We have studied the kinase complexes formed between Cdc28 and each of the G1 cyclins Cln1, Cln2, and Cln3. Each complex has a specific array of coprecipitated in vitro substrates. We identify one of these as Far1, a protein required for pheromone-induced arrest at Start. Treatment with alpha-factor induces a preferential association and/or phosphorylation of Far1 by the Cln1, Cln2, and Cln3 kinase complexes. This induced interaction depends upon the Fus3 protein kinase, a mitogen-activated protein kinase homolog that functions near the bottom of the alpha-factor signal transduction pathway. Thus, we trace a path through which a mitogen-activated protein kinase regulates a Cdc2 kinase.


2001 ◽  
Vol 69 (10) ◽  
pp. 6217-6224 ◽  
Author(s):  
Myriam de Grado ◽  
Carrie M. Rosenberger ◽  
Annick Gauthier ◽  
Bruce A. Vallance ◽  
B. Brett Finlay

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is an extracellular bacterial pathogen that infects the human intestinal epithelium and is a major cause of infantile diarrhea in developing countries. EPEC belongs to the group of attaching and effacing (A/E) pathogens. It uses a type III secretion system to deliver proteins into the host cell that mediate signal transduction events in host cells. We used gene array technology to study epithelial cell responses to EPEC infection at the level of gene expression. We found that EPEC induces the expression of several genes in infected HeLa cells by a lipopolysaccharide (LPS)-independent mechanism, including cytokines and early growth response factor 1 (Egr-1). The transcription factor Egr-1 is an immediate-early-induced gene that is activated in most cell types in response to stress. EPEC-induced upregulation ofegr-1 is mediated by the activation of the MEK/extracellular signal-regulated kinase signal transduction pathway and is dependent on the type III secretion system. egr-1 is also induced during infection of mice by the A/E pathogenCitrobacter rodentium, suggesting that both Egr-1 and the activation of this mitogen-activated protein kinase signal transduction pathway may play a role in disease.


2005 ◽  
Vol 57 (6) ◽  
pp. 617-623 ◽  
Author(s):  
Jeff L. Browning ◽  
Tushar Patel ◽  
Paul C. Brandt ◽  
Keith A. Young ◽  
Leigh A. Holcomb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document