scholarly journals Secondary Structure Analysis of a Minimal Avian Leukosis-Sarcoma Virus Packaging Signal

2000 ◽  
Vol 74 (1) ◽  
pp. 456-464 ◽  
Author(s):  
Jennifer D. Banks ◽  
Maxine L. Linial

ABSTRACT We previously identified a 160-nucleotide packaging signal, MΨ, from the 5′ end of the Rous sarcoma virus genome. In this study, we determine the secondary structure of MΨ by using phylogenetic analysis with computer modeling and heterologous packaging assays of point mutants. The results of the in vivo studies are in good agreement with the computer model. Additionally, the packaging studies indicate several structures which are important for efficient packaging, including a single-stranded bulge containing the initiation codon for the short open reading frame, uORF3, as well as adjacent stem structures. Finally, we show that the L3 stem-loop at the 3′ end of MΨ is dispensable for packaging, thus identifying an 82-nucleotide minimal packaging signal, μΨ, composed of the O3 stem-loop.

2001 ◽  
Vol 183 (15) ◽  
pp. 4405-4412 ◽  
Author(s):  
Rojana Sukchawalit ◽  
Suvit Loprasert ◽  
Sopapan Atichartpongkul ◽  
Skorn Mongkolsuk

ABSTRACT Analysis of the sequence immediate upstream of ohrrevealed an open reading frame, designated ohrR, with the potential to encode a 17-kDa peptide with moderate amino acid sequence homology to the MarR family of negative regulators of gene expression. ohrR was transcribed as bicistronic mRNA with ohr, while ohr mRNA was found to be 95% monocistronic and 5% bicistronic with ohrR. Expression of both genes was induced by tert-butyl hydroperoxide (tBOOH) treatment. High-level expression ofohrR negatively regulated ohr expression. This repression could be overcome by tBOOH treatment. In vivo promoter analysis showed that the ohrR promoter (P1) has organic peroxide-inducible, strong activity, while the ohrpromoter (P2) has constitutive, weak activity. Only P1 is autoregulated by OhrR. ohr primer extension results revealed three major primer extension products corresponding to the 5′ ends ofohr mRNA, and their levels were strongly induced by tBOOH treatment. Sequence analysis of regions upstream of these sites showed no typical Xanthomonas promoter. Instead, the regions can form a stem-loop secondary structure with the 5′ ends ofohr mRNA located in the loop section. The secondary structure resembles the structure recognized and processed by RNase III enzyme. These findings suggest that the P1 promoter is responsible for tBOOH-induced expression of the ohrR-ohr operon. The bicistronic mRNA is then processed by RNase III-like enzymes to give high levels of ohr mRNA, while ohrR mRNA is rapidly degraded.


2008 ◽  
Vol 83 (5) ◽  
pp. 2119-2129 ◽  
Author(s):  
Jason E. Weil ◽  
Michalis Hadjithomas ◽  
Karen L. Beemon

ABSTRACT In eukaryotic cells, an mRNA bearing a premature termination codon (PTC) or an abnormally long 3′ untranslated region (UTR) is often degraded by the nonsense-mediated mRNA decay (NMD) pathway. Despite the presence of a 5- to 7-kb 3′ UTR, unspliced retroviral RNA escapes this degradation. We previously identified the Rous sarcoma virus (RSV) stability element (RSE), an RNA element downstream of the gag natural translation termination codon that prevents degradation of the unspliced viral RNA. Insertion of this element downstream of a PTC in the RSV gag gene also inhibits NMD. Using partial RNase digestion and selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry, we determined the secondary structure of this element. Incorporating RNase and SHAPE data into structural prediction programs definitively shows that the RSE contains an AU-rich stretch of about 30 single-stranded nucleotides near the 5′ end and two substantial stem-loop structures. The overall secondary structure of the RSE appears to be conserved among 20 different avian retroviruses. The structural aspects of this element will serve as a tool in the future design of cis mutants in addressing the mechanism of stabilization.


1999 ◽  
Vol 73 (7) ◽  
pp. 6048-6055 ◽  
Author(s):  
Mario I. Gorziglia ◽  
Claudia Lapcevich ◽  
Soumitra Roy ◽  
Qiang Kang ◽  
Mike Kadan ◽  
...  

ABSTRACT Toxicity and immunity associated with adenovirus backbone gene expression is an important hurdle to overcome for successful gene therapy. Recent efforts to improve adenovirus vectors for in vivo use have focused on the sequential deletion of essential early genes. Adenovirus vectors have been constructed with the E1 gene deleted and with this deletion in combination with an E2a, E2b, or E4 deletion. We report here a novel vector (Av4orf3nBg) lacking E1, E2a, and all of E4 except open reading frame 3 (ORF3) and expressing a β-galactosidase reporter gene. This vector was generated by transfection of a plasmid carrying the full-length vector sequence into A30.S8 cells that express E1 and E2a but not E4. Production was subsequently performed in an E1-, E2a-, and E4-complementing cell line. We demonstrated with C57BL/6 mice that the Av4orf3nBg vector effected gene transfer with an efficiency comparable to that of the Av3nBg (wild-type E4) vector but that the former exhibited a higher level of β-galactosidase expression. This observation suggests that E4 ORF3 alone is able to enhance RNA levels from the β-galactosidase gene when the Rous sarcoma virus promoter is used to drive transgene expression in the mouse liver. In addition, we observed less liver toxicity in mice injected with the Av4orf3nBg vector than those injected with the Av3nBg vector at a comparable DNA copy number per cell. This study suggests that the additional deletion of E4 in an E1 and E2a deletion background may be beneficial in decreasing immunogenicity and improving safety and toxicity profiles, as well as increasing transgene capacity and expression for liver-directed gene therapy.


1998 ◽  
Vol 72 (10) ◽  
pp. 8073-8082 ◽  
Author(s):  
Nicole A. Doria-Rose ◽  
Volker M. Vogt

ABSTRACT Retrovirus genomes contain a sequence at the 5′ end which directs their packaging into virions. In Rous sarcoma virus, previous studies have identified important segments of the packaging signal, Ψ, and support elements of a secondary-structure prediction. To further characterize this sequence, we used an in vivo selection strategy to test large collections of mutants. We generated pools of full-length viral DNA molecules with short stretches of random sequence in Ψ and transfected each pool into avian cells. Resulting infectious virus was allowed to spread by multiple passages, so that sequences could compete and the best could be selected. This method provides information on the kinds of sequences allowed, as well as those that are most fit. Several predicted stem-loop structures in Ψ were tested. A stem at the base of element O3 was highly favored; only sequences which maintained base pairing were selected. Two other stems, at the base and in the middle of element L3, were not conserved: neither base pairing nor sequence was maintained. A single mutation, G213U, was seen upstream of the randomized region in all selected L3 stem mutants; we interpret this to mean that it compensates for the defects in L3. Randomized mutations adjacent to G213 maintained the wild-type base composition but not its sequence. The kissing-loop sequence at end of L3, postulated to function in genome dimerization, was not required for infectivity but was selected for over time. Finally, a deletion of L3 was constructed and found to be poorly infectious.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 568 ◽  
Author(s):  
Shuohui Liu ◽  
Rebecca Kaddis Maldonado ◽  
Tiffiny Rye-McCurdy ◽  
Christiana Binkley ◽  
Aissatou Bah ◽  
...  

Retroviruses package their full-length, dimeric genomic RNA (gRNA) via specific interactions between the Gag polyprotein and a “Ψ” packaging signal located in the gRNA 5′-UTR. Rous sarcoma virus (RSV) gRNA has a contiguous, well-defined Ψ element, that directs the packaging of heterologous RNAs efficiently. The simplicity of RSV Ψ makes it an informative model to examine the mechanism of retroviral gRNA packaging, which is incompletely understood. Little is known about the structure of dimerization initiation sites or specific Gag interaction sites of RSV gRNA. Using selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE), we probed the secondary structure of the entire RSV 5′-leader RNA for the first time. We identified a putative bipartite dimerization initiation signal (DIS), and mutation of both sites was required to significantly reduce dimerization in vitro. These mutations failed to reduce viral replication, suggesting that in vitro dimerization results do not strictly correlate with in vivo infectivity, possibly due to additional RNA interactions that maintain the dimers in cells. UV crosslinking-coupled SHAPE (XL-SHAPE) was next used to determine Gag-induced RNA conformational changes, revealing G218 as a critical Gag contact site. Overall, our results suggest that disruption of either of the DIS sequences does not reduce virus replication and reveal specific sites of Gag–RNA interactions.


1984 ◽  
Vol 4 (8) ◽  
pp. 1508-1514
Author(s):  
A W Stoker ◽  
P J Enrietto ◽  
J A Wyke

Four temperature-sensitive (ts) Rous sarcoma virus src gene mutants with lesions in different parts of the gene represent three classes of alteration in pp60src. These classes are composed of mutants with (i) heat-labile protein kinase activities both in vitro and in vivo (tsLA27 and tsLA29), (ii) heat-labile kinases in vivo but not in vitro (tsLA33), and (iii) neither in vivo nor in vitro heat-labile kinases (tsLA32). The latter class indicates the existence of structural or functional pp60src domains that are required for transformation but do not grossly affect tyrosine kinase activity.


1988 ◽  
Vol 8 (11) ◽  
pp. 4858-4867 ◽  
Author(s):  
S Arrigo ◽  
K Beemon

Only a fraction of retroviral primary transcripts are spliced to subgenomic mRNAs; the unspliced transcripts are transported to the cytoplasm for packaging into virions and for translation of the gag and pol genes. We identified cis-acting sequences within the gag gene of Rous sarcoma virus (RSV) which negatively regulate splicing in vivo. Mutations were generated downstream of the splice donor (base 397) in the intron of a proviral clone of RSV. Deletion of bases 708 to 800 or 874 to 987 resulted in a large increase in the level of spliced RSV RNA relative to unspliced RSV RNA. This negative regulator of splicing (nrs) also inhibited splicing of a heterologous splice donor and acceptor pair when inserted into the intron. The nrs element did not affect the level of spliced RNA by increasing the rate of transport of the unspliced RNA to the cytoplasm but interfered more directly with splicing. To investigate the possible role of gag proteins in splicing, we studied constructs carrying frameshift mutations in the gag gene. While these mutations, which caused premature termination of gag translation, did not affect the level of spliced RSV RNA, they resulted in a large decrease in the accumulation of unspliced RNA in the cytoplasm.


Sign in / Sign up

Export Citation Format

Share Document