scholarly journals Functional Heterogeneity and High Frequencies of Cytomegalovirus-Specific CD8+ T Lymphocytes in Healthy Seropositive Donors

2000 ◽  
Vol 74 (17) ◽  
pp. 8140-8150 ◽  
Author(s):  
Geraldine M. A. Gillespie ◽  
Mark R. Wills ◽  
Victor Appay ◽  
Chris O'Callaghan ◽  
Mike Murphy ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) infection is largely asymptomatic in the immunocompetent host, but remains a major cause of morbidity in immunosuppressed individuals. Using the recently described technique of staining antigen-specific CD8+ T cells with peptide-HLA tetrameric complexes, we have demonstrated high levels of antigen-specific cells specific for HCMV peptides and show that this may exceed 4% of CD8+ T cells in immunocompetent donors. Moreover, by staining with tetramers in combination with antibodies to cell surface markers and intracellular cytokines, we demonstrate functional heterogeneity of HCMV-specific populations. A substantial proportion of these are effector cytotoxic T lymphocytes, as demonstrated by their ability to lyse peptide-pulsed targets in “fresh” killing assays. These data suggest that the immune response to HCMV is periodically boosted by a low level of HCMV replication and that sustained immunological surveillance contributes to the maintenance of host-pathogen homeostasis. These observations should improve our understanding of the immunobiology of persistent viral infection.

1977 ◽  
Vol 145 (1) ◽  
pp. 187-203 ◽  
Author(s):  
R D Stout ◽  
D B Murphy ◽  
H O McDevitt ◽  
L A Herzenberg

Treatment of splenic T lymphocytes with anti-Ia antiserum inhibits the binding of antigen-antibody (AgAb) complexes to the majority (less than 50%) of Fc receptor-positive (FcR+) T cells. A similar inhibition was observed with anti-H-2D and anti-H-2K sera but not with anti-Thy 1.2. Despite the presence of Ia determinants on peripheral T cells, as established by the inhibition of AgAb binding, Ia could not be detected on peripheral T cells by immunofluorescence assays. Data obtained with the AgAb-binding inhibition assay indicate that determinants controlled by loci mapping in the I-A and I-C, S, or G regions are present on the FcR+ T cells. Evidence is presented that subpopulations of T cells within the FcR+ T-cell population may be distinguishable on the basis of which I-region-controlled determinant is expressed. The data are discussed in terms of phenotypic and functional heterogeneity of T lymphocytes.


1996 ◽  
Vol 26 (4) ◽  
pp. 957-960 ◽  
Author(s):  
Andreas Birkhofer ◽  
Joachim Rehbock ◽  
Harald Fricke

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4462 ◽  
Author(s):  
Borros M. Arneth

This study assessed in detail the influence of four different human proteins on the activation of CD4+ and CD8+ T lymphocytes and on the formation of regulatory T cells. Human whole-blood samples were incubated with four different human proteins. The effects of these proteins on the downstream immune-system response, on the expression of extracellular activation markers on and intracellular cytokines in T lymphocytes, and on the number of regulatory T cells (T-reg cells) were investigated via flow cytometry. Incubation with β-actin or glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which are cytoplasmic proteins, increased the expression of both extracellular activation markers (CD69 and HLA-DR) and intracellular cytokines but did not significantly affect the number of T-reg cells. In contrast, incubation with human albumin or insulin, which are serum proteins, reduced both extracellular activation markers and intracellular cytokine expression and subsequently increased the number of T-reg cells. These findings may help to explain the etiological basis of autoimmune diseases.


Author(s):  
Fatemeh Nasri ◽  
Maryam Zare ◽  
Mehrnoosh Doroudchi ◽  
Behrouz Gharesi-Fard

Background: Polycystic ovary syndrome (PCOS) is the most frequent endocrine disorder affecting 6–7% of premenopausal women. Recent studies revealed that the immune system especially CD4+ T helper cells are important in the context PCOS. Proteome analysis of CD4+ T lymphocytes can provide valuable information regarding the biology of these cells in the context of PCOS. Objective: To investigate immune dysregulation in CD4+ T lymphocytes at the protein level in the context of PCOS using two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). Methods: In the present study, we applied two-dimensional gel electrophoresis / mass spectrometry to identify proteins differentially expressed by peripheral blood CD4+ T cells in ten PCOS women compared with ten healthy women. Western blot technique was used to confirm the identified proteins. Results: Despite the overall proteome similarities, there were significant differences in the expression of seven spots between two groups (P <0.05). Three proteins, namely phosphatidylethanolamine-binding protein 1, proteasome activator complex subunit 1 and triosephosphate isomerase 1 were successfully identified by Mass technique and confirmed by western blot. All characterized proteins were over-expressed in CD4+ T cells from patients compared to CD4+ T cells from controls (P <0.05). In-silico analysis suggested that the over-expressed proteins interact with other proteins involved in cellular metabolism especially glycolysis and ferroptosis pathway. Conclusion: These findings suggest that metabolic adjustments in CD4+ T lymphocytes, which is in favor of increased glycolysis and Th2 differentiation are important in the context of PCOS.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dehua Lu ◽  
Yanpu Wang ◽  
Ting Zhang ◽  
Feng Wang ◽  
Kui Li ◽  
...  

Abstract Background Adoptive T cell transfer-based immunotherapy yields unsatisfactory results in the treatment of solid tumors, partially owing to limited tumor infiltration and the immunosuppressive microenvironment in solid tumors. Therefore, strategies for the noninvasive tracking of adoptive T cells are critical for monitoring tumor infiltration and for guiding the development of novel combination therapies. Methods We developed a radiolabeling method for cytotoxic T lymphocytes (CTLs) that comprises metabolically labeling the cell surface glycans with azidosugars and then covalently conjugating them with 64Cu-1,4,7-triazacyclononanetriacetic acid-dibenzo-cyclooctyne (64Cu-NOTA-DBCO) using bioorthogonal chemistry. 64Cu-labeled control-CTLs and ovalbumin-specific CTLs (OVA-CTLs) were tracked using positron emission tomography (PET) in B16-OVA tumor-bearing mice. We also investigated the effects of focal adhesion kinase (FAK) inhibition on the antitumor efficacy of OVA-CTLs using a poly(lactic-co-glycolic) acid (PLGA)-encapsulated nanodrug (PLGA-FAKi). Results CTLs can be stably radiolabeled with 64Cu with a minimal effect on cell viability. PET imaging of 64Cu-OVA-CTLs enables noninvasive mapping of their in vivo behavior. Moreover, 64Cu-OVA-CTLs PET imaging revealed that PLGA-FAKi induced a significant increase in OVA-CTL infiltration into tumors, suggesting the potential for a combined therapy comprising OVA-CTLs and PLGA-FAKi. Further combination therapy studies confirmed that the PLGA-FAKi nanodrug markedly improved the antitumor effects of adoptive OVA-CTLs transfer by multiple mechanisms. Conclusion These findings demonstrated that metabolic radiolabeling followed by PET imaging can be used to sensitively profile the early-stage migration and tumor-targeting efficiency of adoptive T cells in vivo. This strategy presents opportunities for predicting the efficacy of cell-based adoptive therapies and for guiding combination regimens. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document