scholarly journals Inhibition of CD3/CD28-Mediated Activation of the MEK/ERK Signaling Pathway Represses Replication of X4 but Not R5 Human Immunodeficiency Virus Type 1 in Peripheral Blood CD4+T Lymphocytes

2000 ◽  
Vol 74 (6) ◽  
pp. 2558-2566 ◽  
Author(s):  
Waldemar Popik ◽  
Paula M. Pitha

ABSTRACT Binding of human immunodeficiency virus type 1 (HIV-1) to CD4 receptors induces multiple cellular signaling pathways, including the MEK/ERK cascade. While the interaction of X4 HIV-1 with CXCR4 does not seem to activate this pathway, viruses using CCR5 for entry efficiently activate MEK/ERK kinases (W. Popik, J. E. Hesselgesser, and P. M. Pitha, J. Virol. 72:6406–6413, 1998; W. Popik and P. M. Pitha, Virology 252:210–217, 1998). Since the importance of MEK/ERK in the initial steps of viral replication is poorly understood, we have examined the role of MEK/ERK signaling in the CD3- and CD28 (CD3/CD28)-mediated activation of HIV-1 replication in resting peripheral blood CD4+ T lymphocytes infected with X4 or R5 HIV-1. We have found that the MEK/ERK inhibitor U0126 selectively inhibited CD3/CD28-stimulated replication of X4 HIV-1, while it did not affect the replication of R5 HIV-1. Inhibition of the CD3/CD28-stimulated MEK/ERK pathway did not affect the formation of the early proviral transcripts in cells infected with either X4 or R5 HIV-1, indicating that virus reverse transcription is not affected in the absence of MEK/ERK signaling. In contrast, the levels of nuclear provirus in cells infected with X4 HIV-1, detected by the formation of circular proviral DNA, was significantly lower in cells stimulated in the presence of MEK/ERK inhibitor than in the absence of the inhibitor. However, in cells infected with R5 HIV-1, the inhibition of the MEK/ERK pathway did not affect nuclear localization of the proviral DNA. These data suggest that the nuclear import of X4, but not R5, HIV-1 is dependent on a CD3/CD28-stimulated MEK/ERK pathway.

1998 ◽  
Vol 72 (1) ◽  
pp. 660-670 ◽  
Author(s):  
Georges Herbein ◽  
Carine Van Lint ◽  
Jennie L. Lovett ◽  
Eric Verdin

ABSTRACT Apoptosis is a main feature of AIDS pathogenesis and is thought to play a role in the progressive decrease of CD4+ T lymphocytes in infected individuals. To determine whether apoptosis occurs in infected and/or in uninfected peripheral blood T lymphocytes, we have used a recombinant human immunodeficiency virus type 1 (HIV-1) infectious clone expressing the green fluorescent protein (GFP). Using flow cytometry, we have determined the incidence of apoptosis by either terminal transferase dUTP nick end labeling or annexin-V assays in different cell subpopulations, i.e., in CD4+ or CD8+ T cells that were GFP positive or negative. After HIV-1 infection of purified peripheral blood lymphocytes, we observed that apoptosis occurred mostly in infected CD4+ peripheral blood lymphocytes. Remarkably, the presence of monocyte-derived macrophages in the culture increased dramatically the apoptosis of uninfected bystander T lymphocytes, while apoptosis in HIV-infected T lymphocytes was not changed. We therefore demonstrate that HIV-induced apoptosis results from at least two distinct mechanisms: (i) direct apoptosis in HIV-infected CD4+ T lymphocytes and (ii) indirect apoptosis in uninfected T cells mediated by antigen-presenting cells.


2003 ◽  
Vol 77 (3) ◽  
pp. 1848-1855 ◽  
Author(s):  
Sardar T. A. K. Sindhu ◽  
Rasheed Ahmad ◽  
Richard Morisset ◽  
Ali Ahmad ◽  
José Menezes

ABSTRACT Progression of human immunodeficiency virus type 1 (HIV-1) infection in humans is marked by declining CD4+-T-cell counts and increasing virus load (VL). Cytotoxic T lymphocytes (CTL) play an important role in the lysis of HIV-infected cells, especially during the early phase of asymptomatic infection. CTL responses in the later phase of disease progression may not be as effective since progressors with lower CD4+-T-cell counts have consistently higher VL despite having elevated CTL counts. We hypothesized that, apart from antiviral effects, some CTL might also contribute to AIDS pathogenesis by depleting CD4+ T cells and that this CTL activity may correlate with the VL in AIDS patients. Therefore, a cross-sectional study of 31 HIV-1-infected patients at various clinical stages was carried out. Purified CTL from these donors as well as HIV-seronegative controls were used as effectors against different human cell targets by using standard 51Cr release cytolytic assays. A direct correlation between VL and CTL-mediated, major histocompatibility complex (MHC)-unrestricted lysis of primary CD4+-T-cell, CEM.NKR, and K562 targets was observed. CD4+-T-cell counts and duration of infection also correlated with MHC-unrestricted cytolytic activity. Our data clearly show that γδ CTL are abnormally expanded in the peripheral blood of HIV-infected patients and that the Vδ1 subset of γδ T cells is the main effector population responsible for this type of cytolysis. The present data suggest that γδ CTL can contribute to the depletion of bystander CD4+ T cells in HIV-infected patients as a parallel mechanism to HIV-associated immunopathogenesis and hence expedite AIDS progression.


1998 ◽  
Vol 72 (10) ◽  
pp. 8240-8251 ◽  
Author(s):  
Mary Poss ◽  
Allen G. Rodrigo ◽  
John J. Gosink ◽  
Gerald H. Learn ◽  
Dana de Vange Panteleeff ◽  
...  

ABSTRACT The development of viral diversity during the course of human immunodeficiency virus type 1 (HIV-1) infection may significantly influence viral pathogenesis. The paradigm for HIV-1 evolution is based primarily on studies of male cohorts in which individuals were presumably infected with a single virus variant of subtype B HIV-1. In this study, we evaluated virus evolution based on sequence information of the V1, V2, and V3 portions of HIV-1 clade A envelope genes obtained from peripheral blood and cervical secretions of three women with genetically heterogeneous viral populations near seroconversion. At the first sample following seroconversion, the number of nonsynonymous substitutions per potential nonsynonymous site (dn) significantly exceeded substitutions at potential synonymous sites (ds) in plasma viral sequences from all individuals. Generally, values of dn remained higher than values of ds as sequences from blood or mucosa evolved. Mutations affected each of the three variable regions of the envelope gene differently; insertions and deletions dominated changes in V1, substitutions involving charged amino acids occurred in V2, and sequential replacement of amino acids over time at a small subset of positions distinguished V3. The relationship among envelope nucleotide sequences obtained from peripheral blood mononuclear cells, plasma, and cervical secretions was evaluated for each individual by both phylogenetic and phenetic analyses. In all subjects, sequences from within each tissue compartment were more closely related to each other than to sequences from other tissues (phylogenetic tissue compartmentalization). At time points after seroconversion in two individuals, there was also greater genetic identity among sequences from the same tissue compartment than among sequences from different tissue compartments (phenetic tissue compartmentalization). Over time, temporal phylogenetic and phenetic structure was detectable in mucosal and plasma viral samples from all three women, suggesting a continual process of migration of one or a few infected cells into each compartment followed by localized expansion and evolution of that population.


1990 ◽  
Vol 172 (4) ◽  
pp. 1151-1158 ◽  
Author(s):  
B Ardman ◽  
M A Sikorski ◽  
M Settles ◽  
D E Staunton

Sera from human immunodeficiency virus type 1 (HIV-1)-infected and -noninfected individuals were screened for antibodies that could bind to native T cell differentiation antigens. Antibodies that could immunoprecipitate CD43 (sialophorin, leukosialin) from a T cell lymphoma line were detected in sera from 27% of patients, and antibodies that could bind specifically to transfected cells expressing CD43 were detected in 47% of patients. The anti-CD43 antibodies were related to HIV-1 infection in that no patients with other chronic viral infections or systemic lupus erythematosus contained such antibodies in their sera. The anti-CD43 autoantibodies bound to a partially sialylated form of CD43 expressed by normal human thymocytes, but not by normal, circulating T lymphocytes. However, the determinant(s) recognized by the anti-CD43 autoantibodies was present on a large proportion of circulating T lymphocytes, but masked from antibody recognition by sialic acid residues. These results demonstrate that HIV-1 infection is specifically associated with the production of autoantibodies that bind to a native T cell surface antigen.


2016 ◽  
Vol 90 (17) ◽  
pp. 7607-7617 ◽  
Author(s):  
Hélène Dutartre ◽  
Mathieu Clavière ◽  
Chloé Journo ◽  
Renaud Mahieux

Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are complex retroviruses mainly infecting CD4+T lymphocytes. In addition, antigen-presenting cells such as dendritic cells (DCs) are targetedin vivoby both viruses, although to a lesser extent. Interaction of HIV-1 with DCs plays a key role in viral dissemination from the mucosa to CD4+T lymphocytes present in lymphoid organs. While similar mechanisms may occur for HTLV-1 as well, most HTLV-1 data were obtained from T-cell studies, and little is known regarding the trafficking of this virus in DCs. We first compared the efficiency of cell-free versus cell-associated viral sources of both retroviruses at infecting DCs. We showed that both HIV-1 and HTLV-1 cell-free particles are poorly efficient at productively infecting DCs, except when DC-SIGN has been engaged. Furthermore, while SAMHD-1 accounts for restriction of cell-free HIV-1 infection, it is not involved in HTLV-1 restriction. In addition, cell-free viruses lead mainly to a nonproductive DC infection, leading totrans-infection of T-cells, a process important for HIV-1 spread but not for that of HTLV-1. Finally, we show that T-DC cell-to-cell transfer implies viral trafficking in vesicles that may both increase productive infection of DCs (“cis-infection”) and allow viral escape from immune surveillance. Altogether, these observations allowed us to draw a model of HTLV-1 and HIV-1 trafficking in DCs.


2001 ◽  
Vol 75 (1) ◽  
pp. 439-447 ◽  
Author(s):  
Susana T. Valente ◽  
Chantal Chanel ◽  
Julie Dumonceaux ◽  
René Olivier ◽  
Stephano Marullo ◽  
...  

ABSTRACT Macrophages and T cells infected in vitro with CD4-dependent human immunodeficiency virus type 1 (HIV-1) isolates have reduced levels of CD4 protein, a phenomenon involved in retroviral interference. We have previously characterized the first CD4-independent HIV-1 X4 isolate m7NDK, which directly interacts with CXCR4 through its mutated gp120. We thus investigate CXCR4 expression in cells infected with this m7NDK CXCR4-dependent HIV-1 mutant. We present evidence of the down-regulation of CXCR4 membrane expression in CD4-positive or -negative cells chronically infected with the HIV-1 m7NDK, a phenomenon which is not observed in the CD4-dependent HIV-1 NDK parental strain. This down-regulation of CXCR4 was demonstrated by fluorescence-activated cell sorter analysis and was confirmed by the absence of CXCR4 functionality in m7NDK-infected cells, independently of the presence of CD4 protein. Furthermore, a drastic reduction of the intracellular level of CXCR4 protein was also observed. Reduced levels of CXCR4 mRNA transcripts were found in m7NDK-infected HeLa and CEM cells, reduced levels that could not be attributed to a reduced stability of CXCR4 mRNA. Down-regulation of CXCR4 on m7NDK-infected cells may thus be explained by transcriptional regulation.


1994 ◽  
Vol 180 (4) ◽  
pp. 1283-1293 ◽  
Author(s):  
T J Tsomides ◽  
A Aldovini ◽  
R P Johnson ◽  
B D Walker ◽  
R A Young ◽  
...  

We have established long-term cultures of several cell lines stably and uniformly expressing human immunodeficiency virus type 1 (HIV-1) in order to (a) identify naturally processed HIV-1 peptides recognized by cytotoxic T lymphocytes (CTL) from HIV-1-seropositive individuals and (b) consider the hypothesis that naturally occurring epitope densities on HIV-infected cells may limit their lysis by CTL. Each of two A2-restricted CD8+ CTL specific for HIV-1 gag or reverse transcriptase (RT) recognized a single naturally processed HIV-1 peptide in trifluoroacetic acid (TFA) extracts of infected cells: gag 77-85 (SLYNTVATL) or RT 476-484 (ILKEPVHGV). Both processed peptides match the synthetic peptides that are optimally active in cytotoxicity assays and have the consensus motif described for A2-associated peptides. Their abundances were approximately 400 and approximately 12 molecules per infected Jurkat-A2 cell, respectively. Other synthetic HIV-1 peptides active at subnanomolar concentrations were not present in infected cells. Except for the antigen processing mutant line T2, HIV-infected HLA-A2+ cell lines were specifically lysed by both A2-restricted CTL, although infected Jurkat-A2 cells were lysed more poorly by RT-specific CTL than by gag-specific CTL, suggesting that low cell surface density of a natural peptide may limit the effectiveness of some HIV-specific CTL despite their vigorous activity against synthetic peptide-treated target cells.


1999 ◽  
Vol 73 (12) ◽  
pp. 9899-9907 ◽  
Author(s):  
Amanda Brown ◽  
Xia Wang ◽  
Earl Sawai ◽  
Cecilia Cheng-Mayer

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication in both primary T lymphocytes and monocyte-derived macrophages. This enhancement phenotype has been linked to the ability of Nef to modulate the activity of cellular kinases. We find that despite the reported high-affinity interaction between Nef and the Src kinase Hck in vitro, a Nef-Hck interaction in the context of HIV-1-infected primary macrophages is not detectable. However, Nef binding and activation of the PAK-related kinase and phosphorylation of its substrate could be readily detected in both infected primary T lymphocytes and macrophages. Furthermore, we show that this substrate is a complex composed of the recently characterized PAK interacting partner PIX (PAK-interacting guanine nucleotide exchange factor) and its tightly associated p95 protein. PAK and PIX-p95 appear to be differentially activated and phosphorylated depending on the intracellular environment in which nef is expressed. These results identify the PIX-p95 complex as a novel effector of Nef in primary cells and suggest that the regulation of the PAK signaling pathway may differ in T cells and macrophages.


Sign in / Sign up

Export Citation Format

Share Document