scholarly journals Induction of Indolamine 2,3-Dioxygenase in Primary Human Macrophages by Human Immunodeficiency Virus Type 1 Is Strain Dependent

2000 ◽  
Vol 74 (9) ◽  
pp. 4110-4115 ◽  
Author(s):  
Ross S. Grant ◽  
Hassan Naif ◽  
Sophie J. Thuruthyil ◽  
Najla Nasr ◽  
Tamantha Littlejohn ◽  
...  

ABSTRACT Increased kynurenine pathway metabolism has been implicated in the etiology of AIDS dementia complex (ADC). The rate-limiting enzyme for this pathway is indolamine 2,3-dioxygenase (IDO). We tested the efficacy of different strains of human immunodeficiency virus type 1 (HIV1-BaL, HIV1-JRFL, and HIV1-631) to induce IDO in cultured human monocyte-derived macrophages (MDM). A significant increase in both IDO protein and kynurenine synthesis was observed after 48 h in MDM infected with the brain-derived HIV-1 isolates, laboratory-adapted (LA) HIV1-JRFL, and primary isolate HIV1-631. In contrast, almost no kynurenine production or IDO protein was evident in MDM infected with the highly replicating macrophage-tropic LA strain HIV1-BaL. The induction of IDO and kynurenine synthesis by HIV1-JRFL and HIV1-631 declined to baseline levels by day 8 postinfection. Abundant HIV-1 replication did not reduce the ability of exogenous gamma interferon (IFN-γ) to induce IDO and kynurenine synthesis in HIV-infected MDM. The addition of anti-IFN-γ antibody to MDM infected with HIV1-JRFL resulted in an absence of detectable IDO protein after 48 h and a decrease of 64% ± 1% in supernatant kynurenine concentration. Together, these results indicate that only selected strains of HIV-1 are capable of inducing IDO synthesis and subsequent kynurenine metabolism in MDM. The induction of IDO, while apparently independent of replication capacity, appears to be mediated by a transient production of IFN-γ in MDM responding to the initial infection with selected strains of HIV-1.

2006 ◽  
Vol 13 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Geoffrey J. Gorse ◽  
Ramona E. Simionescu ◽  
Gira B. Patel

ABSTRACT Effects of human immunodeficiency virus type 1 (HIV-1) recombinant envelope glycoprotein vaccines on cell-mediated immune (CMI) responses were assessed in HIV-1-infected patients. Asymptomatic, antiretroviral-treatment-naïve, HIV-1-infected patients with CD4+ T-cell counts greater than 400/μl received multiple intramuscular injections of HIV-1 IIIB recombinant envelope glycoprotein (rgp160) vaccine or HIV-1 MN recombinant envelope glycoprotein (rgp120) vaccine (eight patients, referred to as the HIV-1 vaccinees) or placebo or hepatitis B vaccine (three patients, referred to as the controls). Lymphocyte proliferation in response to HIV-1 envelope glycoproteins, both homologous and heterologous to the HIV-1 immunogens, was absent prior to study treatment in all patients but increased significantly during the vaccination series and after the final vaccination in HIV-1 vaccinees (P < 0.05) and remained absent in control patients. In flow cytometric analyses of intracellular cytokines, T-cell receptor stimulation with an anti-CD3 antibody induced gamma interferon (IFN-γ) expression by activated CD4+ and CD8+ lymphocytes at greater frequencies than did stimulation with recombinant envelope glycoprotein and p24 of HIV-1 (P< 0.05). Mean frequencies of HIV-1 envelope glycoprotein-stimulated, activated intracellularIFN-γ-producing CD4+ and CD8+ lymphocytes and of interleukin-2-producing CD4+ lymphocytes did not increase after vaccination, but cytokine-producing cells were detectable in some patients. Comparing pre- to post-HIV-1 vaccination time points, changes in frequencies of activated, IFN-γ-producing CD4+ cells correlated inversely with changes in lymphocyte proliferation in response to recombinant envelope glycoprotein in HIV-1 vaccinees (P < 0.05). Increased CMI responses to HIV-1 envelope glycoprotein measured by lymphocyte proliferation were associated with HIV-1 recombinant envelope glycoprotein vaccines.


2012 ◽  
Vol 93 (12) ◽  
pp. 2625-2634 ◽  
Author(s):  
Elena Capel ◽  
Glòria Martrus ◽  
Mariona Parera ◽  
Bonaventura Clotet ◽  
Miguel Angel Martínez

The rapid spread of human immunodeficiency virus type 1 (HIV-1) in humans has been accompanied by continuous extensive genetic diversification of the virus. The aim of this study was to investigate the impact of HIV-1 diversification on HIV-1 replication capacity (RC) and mutational robustness. Thirty-three HIV-1 protease sequences were amplified from three groups of viruses: two naïve sample groups isolated 15 years apart plus a third group of protease inhibitor-(PI) resistant samples. The amplified proteases were recombined with an HXB2 infectious clone and RC was determined in MT-4 cells. RC was also measured in these three groups after random mutagenesis in vitro using error-prone PCR. No significant RC differences were observed between recombinant viruses from either early or recent naïve isolates (P = 0.5729), even though the proteases from the recent isolates had significantly lower sequence conservation scores compared with a subtype B ancestral sequence (P<0.0001). Randomly mutated recombinant viruses from the three groups exhibited significantly lower RC values than the corresponding wild-type viruses (P<0.0001). There was no significant difference regarding viral infectivity reduction between viruses carrying randomly mutated naïve proteases from early or recent sample isolates (P = 0.8035). Interestingly, a significantly greater loss of RC was observed in the PI-resistant protease group (P = 0.0400). These results demonstrate that protease sequence diversification has not affected HIV-1 RC or protease robustness and indicate that proteases carrying PI resistance substitutions are less robust than naïve proteases.


2007 ◽  
Vol 15 (2) ◽  
pp. 284-292 ◽  
Author(s):  
Nancy C. Connolly ◽  
Theresa L. Whiteside ◽  
Cara Wilson ◽  
Venkatswarlu Kondragunta ◽  
Charles R. Rinaldo ◽  
...  

ABSTRACT Treatments for human immunodeficiency virus type 1 (HIV-1)-positive individuals that augment HIV-1 suppression and have potential for achieving long-term control of HIV-1 viremia in the absence of antiretroviral therapy (ART) are urgently needed. We therefore conducted a phase I, clinical safety trial of a dendritic cell (DC)-based vaccination strategy as immunotherapy for HIV-1-positive individuals on ART. We studied 18 HIV-1-positive subjects on ART who underwent leukapheresis to obtain peripheral blood mononuclear cells for DC generation from monocytes cultured with cytokines. Mature DC were pulsed with three HIV-1 HLA*A0201 Gag, Env, and Pol peptides and one influenza A virus matrix protein peptide. The vaccine was administered to donors randomized to receive two vaccinations, either intravenously or subcutaneously. The primary end points were safety and tolerability of two doses of peptide-DC vaccine (3 million versus 10 million). Secondary end points included gamma interferon (IFN-γ) enzyme-linked immunospot assay responses and clinical correlates of an immune response to vaccination. Autologous DC-peptide vaccine was safe, well tolerated, and feasible for use in all participants. Adverse events were rare. Although the trial was not powered to assess an immunologic response, a significantly increased frequency of HIV-1 peptide-specific IFN-γ-positive cells was observed 2 weeks following the second vaccine, with three individuals responding to all four peptides. DC vaccination was safe, was feasible, and showed promise of immunogenicity in ART-treated, HIV-1-positive individuals. Additional studies of DC immunization strategies for HIV-1 infection are warranted.


2009 ◽  
Vol 83 (19) ◽  
pp. 9694-9708 ◽  
Author(s):  
Behzad Etemad ◽  
Angela Fellows ◽  
Brenda Kwambana ◽  
Anupa Kamat ◽  
Yang Feng ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein modifications over the course of infection have been associated with coreceptor switching and antibody neutralization resistance, but the effect of the changes on replication and host cell receptor usage remains unclear. To examine this question, unique early- and chronic-stage infection envelope V1-toV5 (V1-V5) segments from eight HIV-1 subtype A-infected subjects were incorporated into an isogenic background to construct replication-competent recombinant viruses. In all subjects, viruses with chronic-infection V1-V5 segments showed greater replication capacity than those with early-infection V1-V5 domains in cell lines with high levels of both the CD4 and the CCR5 receptors. Viruses with chronic-infection V1-V5s demonstrated a significantly increased ability to replicate in cells with low CCR5 receptor levels and greater resistance to CCR5 receptor and fusion inhibitors compared to those with early-infection V1-V5 segments. These properties were associated with sequence changes in the envelope V1-V3 segments. Viruses with the envelope segments from the two infection time points showed no significant difference in their ability to infect cells with low CD4 receptor densities, in their sensitivity to soluble CD4, or in their replication capacity in monocyte-derived macrophages. Our results suggest that envelope changes, primarily in the V1-V3 domains, increase both the ability to use the CCR5 receptor and fusion kinetics. Thus, envelope modifications over time within a host potentially enhance replication capacity.


2008 ◽  
Vol 82 (14) ◽  
pp. 7189-7200 ◽  
Author(s):  
Biswanath Majumder ◽  
Narasimhan J. Venkatachari ◽  
Shaylee O'Leary ◽  
Velpandi Ayyavoo

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection has been implicated in impairing various aspects of NK cell function in viremic condition, and several viral factors contribute to these defects. Here, we evaluated the effect of HIV-1 Vpr on NK cell cytolytic function and cytokine (gamma interferon [IFN-γ]) production in the context of infection and exposure. Our data indicate that NK cells derived from a peripheral blood mononuclear cell culture infected in vitro with HIV-1 vpr(+) virus or exposed to recombinant Vpr protein exhibited reduced target cell killing in conjunction with diminished expression of CD107a and reduced IFN-γ production compared to their Vpr-negative counterparts. This Vpr-induced NK cell defect is in part through differential regulation of interleukin-12 and transforming growth factor β production by the infected target cells and concomitant activation of Smad3 signaling pathway. Collectively, these results illustrate the ability of Vpr to impair NK cell-mediated innate immune functions indirectly by dysregulating multiple cytokines in the infected target cells, thus increasing disease severity and affecting the final outcome in HIV-1 infection.


2004 ◽  
Vol 78 (22) ◽  
pp. 12638-12646 ◽  
Author(s):  
Eli Boritz ◽  
Brent E. Palmer ◽  
Cara C. Wilson

ABSTRACT Diminished in vitro proliferation of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cells has been associated with HIV-1 viremia and declining CD4+ T-cell counts during chronic infection. To better understand this phenomenon, we examined whether HIV-1 Gag p24 antigen-induced CD4+ T-cell proliferation might recover in vitro in a group of subjects with chronic HIV-1 viremia and no history of antiretroviral therapy (ART). We found that depletion of CD8+ cells from peripheral blood mononuclear cells (PBMC) before antigen stimulation was associated with a 6.5-fold increase in the median p24-induced CD4+ T-cell proliferative response and a 57% increase in the number of subjects with positive responses. These p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC were associated with expansion of the numbers of p24-specific, gamma interferon (IFN-γ)-producing CD4+ T cells. Among the 20 viremic, treatment-naïve subjects studied, the only 5 subjects lacking proliferation-competent, p24-specific CD4+ T-cell responses from CD8-depleted PBMC showed plasma HIV-1 RNA levels > 100,000 copies/ml. Furthermore, both the magnitude of p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC and the frequency of p24-specific, IFN-γ-producing CD4+ T cells expanded from CD8-depleted PBMC were associated inversely with plasma HIV-1 RNA levels. Therefore, proliferation-competent, HIV-1-specific CD4+ T cells that might help control HIV-1 disease may persist during chronic, progressive HIV-1 disease except at very high levels of in vivo HIV-1 replication.


2006 ◽  
Vol 87 (5) ◽  
pp. 1295-1302 ◽  
Author(s):  
Chenqi Zhao ◽  
Sandra Thibault ◽  
Nadine Messier ◽  
Marc Ouellette ◽  
Barbara Papadopoulou ◽  
...  

Concurrent uncontrolled development of human immunodeficiency virus type 1 (HIV-1) and Leishmania spp. is regarded as an emerging pathogenic combination in countries where human beings are exposed to these two micro-organisms. The present study was aimed at exploring whether HIV-1 development within a culture of human monocyte-derived macrophages (MDMs) affected the further development of luciferase-encoding Leishmania infantum using the luciferase activity as a readout assay. It was demonstrated that, in cultures of HIV-1-loaded MDMs exposed to axenic amastigotes, the luciferase activity was higher than in HIV-1-free MDMs. As a preliminary approach to deciphering the possible mechanism through which HIV-1 can affect Leishmania infantum, attention was focused on the very early processes that could underlie this increased luciferase activity. Using GFP-labelled parasites, it was possible to establish that, in HIV-1-infected MDMs, the percentage of GFP-expressing MDMs was higher (10–20 %) than in cell cultures not exposed to HIV-1 (5 %). Two-colour immunofluorescence staining suggested that HIV-1 indirectly affects the uptake of parasites inside MDMs. Thus, the observed phenomenon seems to be linked with a higher uptake of parasites within MDMs. Taken together, the data reported here may contribute to our understanding of disseminated Leishmania infection in HIV-1-infected individuals.


2005 ◽  
Vol 79 (23) ◽  
pp. 14822-14833 ◽  
Author(s):  
Natasha Larke ◽  
Aileen Murphy ◽  
Christoph Wirblich ◽  
Denise Teoh ◽  
Marie J. Estcourt ◽  
...  

ABSTRACT In the absence of strategies for reliable induction of antibodies broadly neutralizing human immunodeficiency virus type 1 (HIV-1), vaccine efforts have shifted toward the induction of cell-mediated immunity. Here we describe the construction and immunogenicity of novel T-cell vaccine NS1.HIVA, which delivers the HIV-1 clade A consensus-derived immunogen HIVA on the surface of tubular structures spontaneously formed by protein NS1 of bluetongue virus. We demonstrated that NS1 tubules can accommodate a protein as large as 527 amino acids without losing their self-assembly capability. When injected into BALB/c mice by several routes, chimeric NS1.HIVA tubules induced HIV-1-specific major histocompatibility complex class I-restricted T cells. These could be boosted by modified virus Ankara expressing the same immunogen and generate a memory capable of gamma interferon (IFN-γ) production, proliferation, and lysis of sensitized target cells. Induced memory T cells readily produced IFN-γ 230 days postimmunization, and upon a surrogate virus challenge, NS1.HIVA vaccine alone decreased the vaccinia virus vv.HIVA load in ovaries by 2 orders of magnitude 280 days after immunization. Thus, because of its T-cell immunogenicity and antigenic simplicity, the NS1 delivery system could serve as a priming agent for heterologous prime-boost vaccination regimens. Its usefulness in primates, including humans, remains to be determined.


2003 ◽  
Vol 77 (4) ◽  
pp. 2663-2674 ◽  
Author(s):  
Uma Malhotra ◽  
Sarah Holte ◽  
Tuofu Zhu ◽  
Elizabeth Delpit ◽  
Claire Huntsberry ◽  
...  

ABSTRACT Mounting evidence points to a role for CD4+ T-helper (Th) cell activities in controlling human immunodeficiency virus type 1 (HIV-1) infection. To determine the induction and evolution of Th responses following acute infection, we prospectively analyzed Env- and Gag-specific Th responses longitudinally for 92 patients with acute (n = 28) or early (n = 64) HIV-1 infection (median, 55 days postinfection [DPI]). The probability of detecting HIV-1-specific lymphoproliferative responses was remarkably low, and when present, the responses were more likely to be Gag specific than Env specific (16 versus 5%). Env-specific responses were significantly more common in patients presenting at <30 DPI than in those presenting at 30 to 365 DPI (21 versus 0.5%, P = 0.001). By contrast, Gag-specific responses occurred with similar frequencies among subjects presenting at <30 DPI and 30 to 365 DPI (13 versus 17%, P = 0.6). After treatment, and regardless of the duration of infection before therapy, Gag-specific Th responses predominated. Furthermore, some acutely infected subjects lost detectable Env-specific Th proliferative responses, which failed to reemerge upon treatment. Detailed analysis for one such subject revealed Env-specific lymphoproliferation at 11 DPI but no detectable Env-specific lymphoproliferation or ex vivo gamma interferon (IFN-γ) secretion at multiple subsequent time points. Env-specific CD4+ T-cell clones from 11 DPI recognized six epitopes in both conserved and variable regions within gp120 and gp41, exhibited major histocompatibility complex-restricted cytotoxicity, and secreted high levels of antiviral cytokines. T-cell receptor clonal transcript analyses and autologous virus sequencing revealed that Th cells induced during acute infection were maintained and there were no Th escape mutations. Subsequent analysis for this subject and six of seven others revealed detectable IFN-γ-secreting cells, but only following in vitro gp160 stimulation. In summary, we conclude that Env-specific Th responses are elicited very early in acute infection and may precede Gag-specific responses. The inability to detect Env-specific Th responses over time and despite antiretroviral therapy may reflect low frequencies and impaired proliferative capacity, and viral escape is not necessary for this to occur.


Sign in / Sign up

Export Citation Format

Share Document