scholarly journals Transient Mobilization of Human Immunodeficiency Virus (HIV)-Specific CD4 T-Helper Cells Fails To Control Virus Rebounds during Intermittent Antiretroviral Therapy in Chronic HIV Type 1 Infection

2001 ◽  
Vol 75 (1) ◽  
pp. 234-241 ◽  
Author(s):  
Guislaine Carcelain ◽  
Roland Tubiana ◽  
Assia Samri ◽  
Vincent Calvez ◽  
Constance Delaugerre ◽  
...  

ABSTRACT Immune control of human immunodeficiency virus (HIV) is not restored by highly active antiretroviral therapies (HAART) during chronic infection. We examined the capacity of repeated structured therapeutic interruptions (STI) to restore HIV-specific CD4 and CD8 T-cell responses that controlled virus production. Eleven STI (median duration, 7 days; ranges, 4 to 24 days) were performed in three chronically HIV-infected patients with CD4 counts above 400/mm3 and less than 200 HIV RNA copies/ml after 18 to 21 months of HAART; treatment resumed after 1 week or when virus became detectable. HIV-specific T-cell responses were analyzed by proliferation, gamma interferon (IFN-γ) production, and enzyme-linked immunospot assays. Seven virus rebounds were observed (median, 4,712 HIV-1 RNA copies/ml) with a median of 7 days during which CD4 and CD8 counts did not significantly change. After treatment resumed, the viral load returned below 200 copies/ml within 3 weeks. Significant CD4 T-cell proliferation and IFN-γ production against HIV p24 appeared simultaneously with or even before the virus rebounds in all patients. These CD4 responses lasted for less than 3 weeks and disappeared before therapeutic control of the virus had occurred. Increases in the numbers of HIV-specific CD8 T cells were delayed compared to changes in HIV-specific CD4 T-cell responses. No delay or increase in virus doubling time was observed after repeated STI. Iterative reexposure to HIV during short STI in chronically infected patients only transiently mobilized HIV-specific CD4 T1-helper cells, which might be rapidly altered by virus replication. Such kinetics might explain the failure at delaying subsequent virus rebounds and raises concerns about strategies based on STI to restore durable HIV-specific T-cell responses in chronic HIV infection.

2004 ◽  
Vol 78 (2) ◽  
pp. 841-854 ◽  
Author(s):  
Kristina Abel ◽  
Lisa La Franco-Scheuch ◽  
Tracy Rourke ◽  
Zhong-Min Ma ◽  
Veronique de Silva ◽  
...  

ABSTRACT Although gamma interferon (IFN-γ) is a key mediator of antiviral defenses, it is also a mediator of inflammation. As inflammation can drive lentiviral replication, we sought to determine the relationship between IFN-γ-related host immune responses and challenge virus replication in lymphoid tissues of simian-human immunodeficiency virus 89.6 (SHIV89.6)-vaccinated and unvaccinated rhesus macaques 6 months after challenge with simian immunodeficiency virus SIVmac239. Vaccinated-protected monkeys had low tissue viral RNA (vRNA) levels, vaccinated-unprotected animals had moderate tissue vRNA levels, and unvaccinated animals had high tissue vRNA levels. The long-term challenge outcome in vaccinated monkeys was correlated with the relative balance between SIV-specific IFN-γ T-cell responses and nonspecific IFN-γ-driven inflammation. Vaccinated-protected monkeys had slightly increased tissue IFN-γ mRNA levels and a high frequency of IFN-γ-secreting T cells responding to in vitro SIVgag peptide stimulation; thus, it is likely that they could develop effective anti-SIV cytotoxic T lymphocytes in vivo. In contrast, both high tissue IFN-γ mRNA levels and strong in vitro SIV-specific IFN-γ T-cell responses were detected in lymphoid tissues of vaccinated-unprotected monkeys. Unvaccinated monkeys had increased tissue IFN-γ mRNA levels but weak in vitro anti-SIV IFN-γ T-cell responses. In addition, in lymphoid tissues of vaccinated-unprotected and unvaccinated monkeys, the increased IFN-γ mRNA levels were associated with increased Mig/CXCL9, IP-10/CXCL10, and CXCR3 mRNA levels, suggesting that increased Mig/CXCL9 and IP-10/CXCL10 expression resulted in recruitment of CXCR3+ activated T cells. Thus, IFN-γ-driven inflammation promotes SIV replication in vaccinated-unprotected and unvaccinated monkeys. Unlike all unvaccinated monkeys, most monkeys vaccinated with SHIV89.6 did not develop IFN-γ-driven inflammation, but they did develop effective antiviral CD8+-T-cell responses.


2001 ◽  
Vol 75 (5) ◽  
pp. 2142-2153 ◽  
Author(s):  
Jose Engelmayer ◽  
Marie Larsson ◽  
Andrew Lee ◽  
Marina Lee ◽  
William I. Cox ◽  
...  

ABSTRACT Recombinant canarypox virus vectors containing human immunodeficiency virus type 1 (HIV-1) sequences are promising vaccine candidates, as they replicate poorly in human cells. However, when delivered intramuscularly the vaccines have induced inconsistent and in some cases transient antigen-specific cytotoxic T-cell (CTL) responses in seronegative volunteers. An attractive way to enhance these responses would be to target canarypox virus to professional antigen-presenting cells such as dendritic cells (DCs). We studied (i) the interaction between canarypox virus and DCs and (ii) the T-cell responses induced by DCs infected with canarypox virus vectors containing HIV-1 genes. Mature and not immature DCs resisted the cytopathic effects of canarypox virus and elicited strong effector CD8+ T-cell responses from chronically infected HIV+ individuals, e.g., cytolysis, and secretion of gamma interferon (IFN-γ) and β-chemokines. Furthermore, canarypox virus-infected DCs were >30-fold more efficient than monocytes and induced responses that were comparable to those induced by vaccinia virus vectors or peptides. Addition of exogenous cytokines was not necessary to elicit CD8+ effector cells, although the presence of CD4+ T cells was required for their expansion and maintenance. Most strikingly, canarypox virus-infected DCs were directly able to stimulate HIV-specific, IFN-γ-secreting CD4 helper responses from bulk as well as purified CD4+ T cells. Therefore, these results suggest that targeting canarypox virus vectors to mature DCs could potentially elicit both anti-HIV CD8+and CD4+ helper responses in vivo.


2009 ◽  
Vol 83 (11) ◽  
pp. 5881-5889 ◽  
Author(s):  
Petra Mooij ◽  
Sunita S. Balla-Jhagjhoorsingh ◽  
Niels Beenhakker ◽  
Patricia van Haaften ◽  
Ilona Baak ◽  
...  

ABSTRACT Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-γ) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4+ and CD8+ T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-γ, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-γ T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved.


AIDS ◽  
2009 ◽  
Vol 27 (7) ◽  
pp. 789-798 ◽  
Author(s):  
Sharon Shalekoff ◽  
Stephen Meddows-Taylor ◽  
Glenda E Gray ◽  
Gayle G Sherman ◽  
Ashraf H Coovadia ◽  
...  

2009 ◽  
Vol 83 (12) ◽  
pp. 6288-6299 ◽  
Author(s):  
Bonnie A. Colleton ◽  
Xiao-Li Huang ◽  
Nada M. Melhem ◽  
Zheng Fan ◽  
Luann Borowski ◽  
...  

ABSTRACT Induction of an antigenically broad and vigorous primary T-cell immune response by myeloid dendritic cells (DC) in blood and tissues could be important for an effective prophylactic or therapeutic vaccine to human immunodeficiency virus type 1 (HIV-1). Here we show that a primary CD8+ T-cell response can be induced by HIV-1 peptide-loaded DC derived from blood monocytes of HIV-1-negative adults and neonates (moDC) and by Langerhans cells (LC) and interstitial, dermal-intestinal DC (idDC) derived from CD34+ stem cells of neonatal cord blood. Optimal priming of single-cell gamma interferon (IFN-γ) production by CD8+ T cells required CD4+ T cells and was broadly directed to multiple regions of Gag, Env, and Nef that corresponded to known and predicted major histocompatibility complex class I epitopes. Polyfunctional CD8+ T-cell responses, defined as single-cell production of more than one cytokine (IFN-γ, interleukin 2, or tumor necrosis factor alpha), chemokine (macrophage inhibitory factor 1β), or cytotoxic degranulation marker CD107a, were primed by moDC, LC, and idDC to HIV-1 Gag and reverse transcriptase epitopes, as well as to Epstein-Barr virus and influenza A virus epitopes. Thus, three major types of blood and tissue myeloid DC targeted by HIV-1, i.e., moDC, LC, and idDC, can prime multispecific, polyfunctional CD8+ T-cell responses to HIV-1 and other viral antigens.


2020 ◽  
Vol 222 (11) ◽  
pp. 1837-1842 ◽  
Author(s):  
Nikolaus Jilg ◽  
Pilar Garcia-Broncano ◽  
Michael Peluso ◽  
Florencia P Segal ◽  
Ronald J Bosch ◽  
...  

Abstract AIDS Clinical Trials Group study A5308 found reduced T-cell activation and exhaustion in human immunodeficiency virus (HIV) controllers start antiretroviral therapy (ART). We further assessed HIV-specific T-cell responses and post-ART viral loads. Before ART, the 31% of participants with persistently undetectable viremia had more robust HIV-specific T-cell responses. During ART, significant decreases were observed in a broad range of T-cell responses. Eight controllers in A5308 and the Study of the Consequences of the Protease Inhibitor Era (SCOPE) cohort showed no viremia above the level of quantification in the first 12 weeks after ART discontinuation. ART significantly reduced HIV-specific T-cell responses in HIV controllers but did not adversely affect controller status after ART discontinuation.


Sign in / Sign up

Export Citation Format

Share Document