scholarly journals Susceptibility of Rat-Derived Cells to Replication by Human Immunodeficiency Virus Type 1

2001 ◽  
Vol 75 (17) ◽  
pp. 8063-8073 ◽  
Author(s):  
Oliver T. Keppler ◽  
Wesley Yonemoto ◽  
Frank J. Welte ◽  
Kathryn S. Patton ◽  
Demetris Iacovides ◽  
...  

ABSTRACT Progress in developing a small animal model of human immunodeficiency virus type 1 (HIV-1) disease would greatly facilitate studies of transmission, pathogenesis, host immune responses, and antiviral strategies. In this study, we have explored the potential of rats as a susceptible host. In a single replication cycle, rat cell lines Rat2 and Nb2 produced infectious virus at levels 10- to 60-fold lower than those produced by human cells. Rat-derived cells supported substantial levels of early HIV-1 gene expression, which was further enhanced by overexpression of human cyclin T1. Rat cells displayed quantitative, qualitative, and cell-type-specific limitations in the late phase of the HIV-1 replication cycle including relative expression levels of HIV-1 Gag proteins, intracellular Gag processing, and viral egress. Nb2 cells were rendered permissive to HIV-1 R5 viruses by coexpression of human CD4 and CCR5, indicating that the major restriction on HIV-1 replication was at the level of cellular entry. We also found that primary rat lymphocytes, macrophages, and microglia expressed considerable levels of early HIV-1 gene products following infection with pseudotyped HIV-1. Importantly, primary rat macrophages and microglia, but not lymphocytes, also expressed substantial levels of HIV-1 p24 CA and produced infectious virions. Collectively, these results identify the rat as a promising candidate for a transgenic small animal model of HIV-1 infection and highlight pertinent cell-type-specific restrictions that are features of this species.

2003 ◽  
Vol 77 (9) ◽  
pp. 5109-5117 ◽  
Author(s):  
Atsushi Koito ◽  
Yuichi Kameyama ◽  
Cecilia Cheng-Mayer ◽  
Shuzo Matsushita

ABSTRACT In vivo studies for understanding viral transmission and replication, host immune responses, and pathogenesis of human immunodeficiency virus type 1 (HIV-1) infection would greatly benefit from the establishment of a small-animal model. In this study, we explored the potential of American mink (Mustera vison) as a susceptible host. We found that primary cells and cell lines derived from this species efficiently supported trans-activation of the HIV-1 long terminal repeat by Tat. Accordingly, the cysteine residue at position 261, which has been shown to be important for interaction of the human cyclin T1 with the HIV-1 regulatory protein Tat, is conserved in the mink homologue. No species-specific defect in Rev function could be detected in mink cells. In addition, primary splenocytes, fibroblasts, and the Mv.1.Lu cell line from American mink supported early as well as late HIV-1 gene expression following infection with vesicular stomatitis G protein-pseudotyped HIV-1 viruses, at levels comparable to those seen with permissive human cells. Furthermore, the mink Mv.1.Lu cell line stably expressing human CD4 and CCR5 receptors supported a spreading HIV-1 infection with few, if any, deficiencies compared to findings in human cell lines. This indicates the potential of HIV-1 to replicate in these cells once the blockade at the stage of virus entry has been removed. These results clearly show that cells from American mink generally pose no functional intracellular block to HIV-1 replication, and collectively they raise the possibility that this animal species could be engineered to support HIV-1 infection, providing a useful small-animal model for evaluating de novo infection by HIV-1.


2007 ◽  
Vol 14 (4) ◽  
pp. 391-396 ◽  
Author(s):  
Dong Sung An ◽  
Betty Poon ◽  
Raphael Ho Tsong Fang ◽  
Kees Weijer ◽  
Bianca Blom ◽  
...  

ABSTRACT The goal of this study was to develop a small-animal model to study human immunodeficiency virus type 1 (HIV-1) pathogenesis in blood and primary and secondary lymphoid organs. Rag2−/−γc −/− mice that are neonatally injected with human CD34+ cells develop a functional human immune system (HIS), with human hematopoietic cells being found in the thymuses, peripheral blood, spleens, and bone marrow of the animals (hereafter these animals are referred to as HIS-Rag2−/−γc −/− mice). HIS-Rag2−/−γc −/− mice were infected with small amounts of CCR5-tropic HIV-1. Viral replication and immunophenotypic changes in the human cells in peripheral blood and lymphoid organs were examined. The productive infection of human cells in peripheral blood, thymus and spleen tissue, and bone marrow was detected. Ratios of CD4+ T cells to CD8+ T cells in the infected animals declined. Although no specific anti-HIV-1 immune responses were detected, immunoglobulin M (IgM) and IgG antibodies to an unidentified fetal calf serum protein present in the virus preparation were found in the inoculated animals. Thus, we have shown that the HIS-Rag2−/−γc −/− mouse model can be used for infection with low doses of CCR5-tropic HIV-1, which is most commonly transmitted during primary infections. HIS-Rag2−/−γc −/− mice can serve as a small-animal model for investigating HIV-1 pathogenesis and testing potential HIV-1 therapies, and studies with this model may replace some long and costly studies with nonhuman primates.


2004 ◽  
Vol 78 (3) ◽  
pp. 1552-1563 ◽  
Author(s):  
Akira Ono ◽  
Eric O. Freed

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) assembly-and-release pathway begins with the targeting of the Gag precursor to the site of virus assembly. The molecular mechanism by which Gag is targeted to the appropriate subcellular location remains poorly understood. Based on the analysis of mutant Gag proteins, we and others have previously demonstrated that a highly basic patch in the matrix (MA) domain of Gag is a major determinant of Gag transport to the plasma membrane. In this study, we determined that in HeLa and T cells, the MA mutant Gag proteins that are defective in plasma membrane targeting form virus particles in a CD63-positive compartment, defined as the late endosome or multivesicular body (MVB). Interestingly, we find that in primary human macrophages, both wild-type (WT) and MA mutant Gag proteins are targeted specifically to the MVB. Despite the fact that particle assembly in macrophages occurs at an intracellular site rather than at the plasma membrane, we observe that WT Gag expressed in this cell type is released as extracellular virions with high efficiency. These results demonstrate that Gag targeting to and assembly in the MVB are physiologically important steps in HIV-1 virus particle production in macrophages and that particle release in this cell type may follow an exosomal pathway. To determine whether Gag targeting to the MVB is the result of an interaction between the late domain in p6Gag and the MVB sorting machinery (e.g., TSG101), we examined the targeting and assembly of Gag mutants lacking p6. Significantly, the MVB localization of Gag was still observed in the absence of p6, suggesting that an interaction between Gag and TSG101 is not required for Gag targeting to the MVB. These data are consistent with a model for Gag targeting that postulates two different cellular binding partners for Gag, one on the plasma membrane and the other in the MVB.


2007 ◽  
Vol 81 (13) ◽  
pp. 7048-7060 ◽  
Author(s):  
Carsten Münk ◽  
Jörg Zielonka ◽  
Hannelore Constabel ◽  
Björn-Philipp Kloke ◽  
Benjamin Rengstl ◽  
...  

ABSTRACT The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity ∼10- to ∼40-fold.


2002 ◽  
Vol 195 (6) ◽  
pp. 719-736 ◽  
Author(s):  
Oliver T. Keppler ◽  
Frank J. Welte ◽  
Tuan A. Ngo ◽  
Peggy S. Chin ◽  
Kathryn S. Patton ◽  
...  

The development of a permissive small animal model for the study of human immunodeficiency virus type (HIV)-1 pathogenesis and the testing of antiviral strategies has been hampered by the inability of HIV-1 to infect primary rodent cells productively. In this study, we explored transgenic rats expressing the HIV-1 receptor complex as a susceptible host. Rats transgenic for human CD4 (hCD4) and the human chemokine receptor CCR5 (hCCR5) were generated that express the transgenes in CD4+ T lymphocytes, macrophages, and microglia. In ex vivo cultures, CD4+ T lymphocytes, macrophages, and microglia from hCD4/hCCR5 transgenic rats were highly susceptible to infection by HIV-1 R5 viruses leading to expression of abundant levels of early HIV-1 gene products comparable to those found in human reference cultures. Primary rat macrophages and microglia, but not lymphocytes, from double-transgenic rats could be productively infected by various recombinant and primary R5 strains of HIV-1. Moreover, after systemic challenge with HIV-1, lymphatic organs from hCD4/hCCR5 transgenic rats contained episomal 2–long terminal repeat (LTR) circles, integrated provirus, and early viral gene products, demonstrating susceptibility to HIV-1 in vivo. Transgenic rats also displayed a low-level plasma viremia early in infection. Thus, transgenic rats expressing the appropriate human receptor complex are promising candidates for a small animal model of HIV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document