scholarly journals Susceptibility of Mink (Mustera vision)-Derived Cells to Replication by Human Immunodeficiency Virus Type 1

2003 ◽  
Vol 77 (9) ◽  
pp. 5109-5117 ◽  
Author(s):  
Atsushi Koito ◽  
Yuichi Kameyama ◽  
Cecilia Cheng-Mayer ◽  
Shuzo Matsushita

ABSTRACT In vivo studies for understanding viral transmission and replication, host immune responses, and pathogenesis of human immunodeficiency virus type 1 (HIV-1) infection would greatly benefit from the establishment of a small-animal model. In this study, we explored the potential of American mink (Mustera vison) as a susceptible host. We found that primary cells and cell lines derived from this species efficiently supported trans-activation of the HIV-1 long terminal repeat by Tat. Accordingly, the cysteine residue at position 261, which has been shown to be important for interaction of the human cyclin T1 with the HIV-1 regulatory protein Tat, is conserved in the mink homologue. No species-specific defect in Rev function could be detected in mink cells. In addition, primary splenocytes, fibroblasts, and the Mv.1.Lu cell line from American mink supported early as well as late HIV-1 gene expression following infection with vesicular stomatitis G protein-pseudotyped HIV-1 viruses, at levels comparable to those seen with permissive human cells. Furthermore, the mink Mv.1.Lu cell line stably expressing human CD4 and CCR5 receptors supported a spreading HIV-1 infection with few, if any, deficiencies compared to findings in human cell lines. This indicates the potential of HIV-1 to replicate in these cells once the blockade at the stage of virus entry has been removed. These results clearly show that cells from American mink generally pose no functional intracellular block to HIV-1 replication, and collectively they raise the possibility that this animal species could be engineered to support HIV-1 infection, providing a useful small-animal model for evaluating de novo infection by HIV-1.

2001 ◽  
Vol 75 (17) ◽  
pp. 8063-8073 ◽  
Author(s):  
Oliver T. Keppler ◽  
Wesley Yonemoto ◽  
Frank J. Welte ◽  
Kathryn S. Patton ◽  
Demetris Iacovides ◽  
...  

ABSTRACT Progress in developing a small animal model of human immunodeficiency virus type 1 (HIV-1) disease would greatly facilitate studies of transmission, pathogenesis, host immune responses, and antiviral strategies. In this study, we have explored the potential of rats as a susceptible host. In a single replication cycle, rat cell lines Rat2 and Nb2 produced infectious virus at levels 10- to 60-fold lower than those produced by human cells. Rat-derived cells supported substantial levels of early HIV-1 gene expression, which was further enhanced by overexpression of human cyclin T1. Rat cells displayed quantitative, qualitative, and cell-type-specific limitations in the late phase of the HIV-1 replication cycle including relative expression levels of HIV-1 Gag proteins, intracellular Gag processing, and viral egress. Nb2 cells were rendered permissive to HIV-1 R5 viruses by coexpression of human CD4 and CCR5, indicating that the major restriction on HIV-1 replication was at the level of cellular entry. We also found that primary rat lymphocytes, macrophages, and microglia expressed considerable levels of early HIV-1 gene products following infection with pseudotyped HIV-1. Importantly, primary rat macrophages and microglia, but not lymphocytes, also expressed substantial levels of HIV-1 p24 CA and produced infectious virions. Collectively, these results identify the rat as a promising candidate for a transgenic small animal model of HIV-1 infection and highlight pertinent cell-type-specific restrictions that are features of this species.


2007 ◽  
Vol 14 (4) ◽  
pp. 391-396 ◽  
Author(s):  
Dong Sung An ◽  
Betty Poon ◽  
Raphael Ho Tsong Fang ◽  
Kees Weijer ◽  
Bianca Blom ◽  
...  

ABSTRACT The goal of this study was to develop a small-animal model to study human immunodeficiency virus type 1 (HIV-1) pathogenesis in blood and primary and secondary lymphoid organs. Rag2−/−γc −/− mice that are neonatally injected with human CD34+ cells develop a functional human immune system (HIS), with human hematopoietic cells being found in the thymuses, peripheral blood, spleens, and bone marrow of the animals (hereafter these animals are referred to as HIS-Rag2−/−γc −/− mice). HIS-Rag2−/−γc −/− mice were infected with small amounts of CCR5-tropic HIV-1. Viral replication and immunophenotypic changes in the human cells in peripheral blood and lymphoid organs were examined. The productive infection of human cells in peripheral blood, thymus and spleen tissue, and bone marrow was detected. Ratios of CD4+ T cells to CD8+ T cells in the infected animals declined. Although no specific anti-HIV-1 immune responses were detected, immunoglobulin M (IgM) and IgG antibodies to an unidentified fetal calf serum protein present in the virus preparation were found in the inoculated animals. Thus, we have shown that the HIS-Rag2−/−γc −/− mouse model can be used for infection with low doses of CCR5-tropic HIV-1, which is most commonly transmitted during primary infections. HIS-Rag2−/−γc −/− mice can serve as a small-animal model for investigating HIV-1 pathogenesis and testing potential HIV-1 therapies, and studies with this model may replace some long and costly studies with nonhuman primates.


2007 ◽  
Vol 81 (13) ◽  
pp. 7048-7060 ◽  
Author(s):  
Carsten Münk ◽  
Jörg Zielonka ◽  
Hannelore Constabel ◽  
Björn-Philipp Kloke ◽  
Benjamin Rengstl ◽  
...  

ABSTRACT The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity ∼10- to ∼40-fold.


2002 ◽  
Vol 195 (6) ◽  
pp. 719-736 ◽  
Author(s):  
Oliver T. Keppler ◽  
Frank J. Welte ◽  
Tuan A. Ngo ◽  
Peggy S. Chin ◽  
Kathryn S. Patton ◽  
...  

The development of a permissive small animal model for the study of human immunodeficiency virus type (HIV)-1 pathogenesis and the testing of antiviral strategies has been hampered by the inability of HIV-1 to infect primary rodent cells productively. In this study, we explored transgenic rats expressing the HIV-1 receptor complex as a susceptible host. Rats transgenic for human CD4 (hCD4) and the human chemokine receptor CCR5 (hCCR5) were generated that express the transgenes in CD4+ T lymphocytes, macrophages, and microglia. In ex vivo cultures, CD4+ T lymphocytes, macrophages, and microglia from hCD4/hCCR5 transgenic rats were highly susceptible to infection by HIV-1 R5 viruses leading to expression of abundant levels of early HIV-1 gene products comparable to those found in human reference cultures. Primary rat macrophages and microglia, but not lymphocytes, from double-transgenic rats could be productively infected by various recombinant and primary R5 strains of HIV-1. Moreover, after systemic challenge with HIV-1, lymphatic organs from hCD4/hCCR5 transgenic rats contained episomal 2–long terminal repeat (LTR) circles, integrated provirus, and early viral gene products, demonstrating susceptibility to HIV-1 in vivo. Transgenic rats also displayed a low-level plasma viremia early in infection. Thus, transgenic rats expressing the appropriate human receptor complex are promising candidates for a small animal model of HIV-1 infection.


2001 ◽  
Vol 75 (17) ◽  
pp. 7944-7955 ◽  
Author(s):  
Noriko Nakajima ◽  
Richard Lu ◽  
Alan Engelman

ABSTRACT Functional retroviral integrase protein is thought to be essential for productive viral replication. Yet, previous studies differed on the extent to which integrase mutant viruses expressed human immunodeficiency virus type 1 (HIV-1) genes from unintegrated DNA. Although one reason for this difference was that class II integrase mutations pleiotropically affected the viral life cycle, another reason apparently depended on the identity of the infected cell. Here, we analyzed integrase mutant viral infectivities in a variety of cell types. Single-round infectivity of class I integration-specific mutant HIV-1 ranged from <0.03 to 0.3% of that of the wild type (WT) across four different T-cell lines. Based on this approximately 10-fold influence of cell type on mutant gene expression, we examined class I and class II mutant replication kinetics in seven different cell lines and two primary cell types. Unexpectedly, some cell lines supported productive class I mutant viral replication under conditions that restricted class II mutant growth. Cells were defined as permissive, semipermissive, or nonpermissive based on their ability to support the continual passage of class I integration-defective HIV-1. Mutant infectivity in semipermissive and permissive cells as quantified by 50% tissue culture infectious doses, however, was only 0.0006 to 0.005% of that of WT. Since the frequencies of mutant DNA recombination in these lines ranged from 0.023 to <0.093% of the WT, we conclude that productive replication in the absence of integrase function most likely required the illegitimate integration of HIV-1 into host chromosomes by cellular DNA recombination enzymes.


1997 ◽  
Vol 41 (5) ◽  
pp. 977-981 ◽  
Author(s):  
J L Zhang ◽  
P L Sharma ◽  
C J Li ◽  
B J Dezube ◽  
A B Pardee ◽  
...  

Topotecan (TPT), a known inhibitor of topoisomerase I, has previously been shown to inhibit the replication of several viruses. The mechanism of inhibition was proposed to be the inhibition of topoisomerase I. We report that TPT decreased replication of human immunodeficiency virus type 1 (HIV-1) in CPT-K5, a cell line with a topoisomerase I mutation. TPT inhibited production of HIV-1 RNA and p24 in CPT-K5 and wild-type cells equally effectively. The antiviral effects of TPT were observed not only in the topoisomerase-mutated CPT-K5 line but also in peripheral blood mononuclear cells (PBMC) acutely infected with clinical isolates and in OM10.1 cells latently infected with HIV and activated by tumor necrosis factor alpha. Little toxicity from TPT was noted in HIV-1-infected PBMC and in CPT-K5 and OM10.1 cells as measured by cell growth and proliferation assays. These observations suggest that TPT targets factors in virus replication other than cellular topoisomerase I and inhibits cytokine-mediated activation in latently infected cells by means other than cytotoxicity. These results suggest a potential for TPT and for other camptothecins in anti-HIV therapy alone and in combination with other antiretroviral drugs.


Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4737-4745 ◽  
Author(s):  
G Furlini ◽  
M Vignoli ◽  
E Ramazzotti ◽  
MC Re ◽  
G Visani ◽  
...  

In human immunodeficiency virus type-1 (HIV-1) infected individuals, CD34+ hematopoietic stem/progenitor cells are profoundly impaired in their proliferation/differentiation capacities. The bulk of the available experimental evidence seems to indicate that hematopoietic progenitors are not susceptible to HIV-1 infection and their defects seem rather the consequence of direct or indirect negative influences of HIV-1-specific soluble proteins released by productively infected accessory cells. We have now shown that in the presence of a concurrent human herpesvirus-6 infection, two hematopoietic (TF-1 [erythromyeloid] and KG-1 [lymphomyeloid]) progenitor cell lines and human CD34+ hematopoietic progenitors isolated from the bone marrow of normal donors, became susceptible to HIV-1 infection and permissive to HIV-1 replication, although with a limited virus yield. These results suggest a further possible mechanism leading to hematopoietic derangement in HIV-1-infected subjects and may help to clarify the controversial issue of the susceptibility of human hematopoietic progenitors to HIV-1 infection.


2009 ◽  
Vol 83 (16) ◽  
pp. 8289-8292 ◽  
Author(s):  
Emily J. Platt ◽  
Miroslawa Bilska ◽  
Susan L. Kozak ◽  
David Kabat ◽  
David C. Montefiori

ABSTRACT The TZM-bl cell line that is commonly used to assess neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) was recently reported to be contaminated with an ecotropic murine leukemia virus (MLV) (Y. Takeuchi, M. O. McClure, and M. Pizzato, J. Virol. 82:12585-12588, 2008), raising questions about the validity of results obtained with this cell line. Here we confirm this observation and show that HIV-1 neutralization assays performed with a variety of serologic reagents in a similar cell line that does not harbor MLV yield results that are equivalent to those obtained in TZM-bl cells. We conclude that MLV contamination has no measurable effect on HIV-1 neutralization when TZM-bl cells are used as targets for infection.


2009 ◽  
Vol 83 (17) ◽  
pp. 8596-8603 ◽  
Author(s):  
Earl Stoddard ◽  
Houping Ni ◽  
Georgetta Cannon ◽  
Chunhui Zhou ◽  
Neville Kallenbach ◽  
...  

ABSTRACT The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.


Sign in / Sign up

Export Citation Format

Share Document