scholarly journals Effects of Cytotoxic T Lymphocytes (CTL) Directed against a Single Simian Immunodeficiency Virus (SIV) Gag CTL Epitope on the Course of SIVmac239 Infection

2002 ◽  
Vol 76 (20) ◽  
pp. 10507-10511 ◽  
Author(s):  
Todd M. Allen ◽  
Peicheng Jing ◽  
Briana Calore ◽  
Helen Horton ◽  
David H. O'Connor ◽  
...  

ABSTRACT Vaccine-induced cytotoxic T lymphocytes (CTL) have been implicated in the control of virus replication in simian immunodeficiency virus (SIV)-challenged and simian-human immunodeficiency virus-challenged macaques. Therefore, we wanted to test the impact that vaccine-induced CTL responses against an immunodominant Gag epitope might have in the absence of other immune responses. By themselves, these strong CTL responses failed to control SIVmac239 replication.

2002 ◽  
Vol 76 (22) ◽  
pp. 11484-11490 ◽  
Author(s):  
Jamal Baig ◽  
Daniel B. Levy ◽  
Paul F. McKay ◽  
Joern E. Schmitz ◽  
Sampa Santra ◽  
...  

ABSTRACT Since most human immunodeficiency virus (HIV) infections are initiated following mucosal exposure to the virus, the anatomic containment or abortion of an HIV infection is likely to require vaccine-elicited cellular immune responses in those mucosal sites. Studying vaccine-elicited mucosal immune responses has been problematic because of the difficulties associated with sampling T lymphocytes from those anatomic compartments. In the present study, we demonstrate that mucosal cytotoxic T lymphocytes (CTL) specific for simian immunodeficiency virus (SIV) and simian HIV can be reproducibly sampled from intestinal mucosal tissue of rhesus monkeys obtained under endoscopic guidance. These lymphocytes recognize peptide-major histocompatibility complex class I complexes and express gamma interferon on exposure to peptide antigen. Interestingly, systemic immunization of monkeys with plasmid DNA immunogens followed by live recombinant attenuated poxviruses or adenoviruses with genes deleted elicits high-frequency SIV-specific CTL responses in these mucosal tissues. These studies therefore suggest that systemic delivery of potent HIV immunogens may suffice to elicit substantial mucosal CTL responses.


2004 ◽  
Vol 78 (19) ◽  
pp. 10249-10257 ◽  
Author(s):  
Hongtao Zhang ◽  
Raja Fayad ◽  
Xilin Wang ◽  
Daniel Quinn ◽  
Liang Qiao

ABSTRACT Mucosal surfaces are the primary portals for human immunodeficiency virus (HIV) transmission. Because systemic immunization, in general, does not induce effective mucosal immune responses, a mucosal HIV vaccine is urgently needed. For this study, we developed papillomavirus pseudoviruses that express HIV-1 Gag. The pseudoviruses are synthetic, nonreplicating viruses, yet they can produce antigens for a long time in the immune system. Here we show that oral immunization of mice by the use of papillomavirus pseudoviruses encoding Gag generated mucosal and systemic Gag-specific cytotoxic T lymphocytes that effectively lysed Gag-expressing target cells. Furthermore, the pseudoviruses generated Gag-specific gamma interferon-producing T cells and serum immunoglobulin G (IgG) and mucosal IgA. In contrast, oral immunization with plasmid DNA encoding HIV-1 Gag did not induce specific immune responses. Importantly, oral immunization with the pseudoviruses induced Gag-specific memory cytotoxic T lymphocytes and protected mice against a rectal mucosal challenge with a recombinant vaccinia virus expressing HIV-1 Gag. Thus, papillomavirus pseudoviruses encoding Gag are a promising mucosal vaccine against AIDS.


1999 ◽  
Vol 73 (7) ◽  
pp. 5466-5472 ◽  
Author(s):  
Michael A. Egan ◽  
Marcelo J. Kuroda ◽  
Gerald Voss ◽  
Jörn E. Schmitz ◽  
William A. Charini ◽  
...  

ABSTRACT To evaluate the impact of the diversity of antigen recognition by T lymphocytes on disease pathogenesis, we must be able to identify and analyze simultaneously cytotoxic T-lymphocyte (CTL) responses specific for multiple viral epitopes. Many of the studies of the role of CD8+ CTLs in AIDS pathogenesis have been done with simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys. These studies have frequently made use of the well-defined SIV Gag CTL epitope p11C,C-M presented to CTL by the HLA-A homologue molecule Mamu-A*01. In the present study we identified and fine mapped two novel Mamu-A*01-restricted CTL epitopes: the SIVmac Pol-derived epitope p68A (STPPLVRLV) and the human immunodeficiency virus type 1 (HIV-1) Env-derived p41A epitope (YAPPISGQI). The frequency of CD8+ CTLs specific for the p11C,C-M, p68A, and p41A epitopes was quantitated in the same animals with a panel of tetrameric Mamu-A*01/peptide/β2m complexes. All SHIV-infected Mamu-A*01+ rhesus monkeys tested had a high frequency of SIVmac Gag-specific CTLs to the p11C,C-M epitope. In contrast, only a fraction of the monkeys tested had detectable CTLs specific for the SIVmac Pol p68A and HIV-1 Env p41A epitopes, and these responses were detected at very low frequencies. Thus, the p11C,C-M-specific CD8+ CTL response is dominant and the p41A- and p68A-specific CD8+ CTL responses are nondominant. These results indicate that CD8+CTL responses to dominant CTL epitopes can be readily quantitated with the tetramer technology; however, CD8+ CTL responses to nondominant epitopes, due to the low frequency of these epitope-specific cells, may be difficult to detect and quantitate by this approach.


2016 ◽  
Vol 90 (12) ◽  
pp. 5541-5548 ◽  
Author(s):  
Matthew S. Sutton ◽  
Charles M. Burns ◽  
Andrea M. Weiler ◽  
Alexis J. Balgeman ◽  
Andrew Braasch ◽  
...  

ABSTRACTFew studies have evaluated the impact of the viral challenge route on protection against a heterologous simian immunodeficiency virus (SIV) challenge. We vaccinated seven macaques with a live attenuated SIV that differed from SIVmac239Δnef by 24 amino acids, called m3KOΔnef. All animals were protected from an intrarectal SIVmac239 challenge, whereas only four animals were protected from subsequent intravenous SIVmac239 challenge. These data suggest that immune responses elicited by vaccination with live attenuated SIV in an individual animal can confer protection from intrarectal challenge while remaining insufficient for protection from intravenous challenge.IMPORTANCEOur study is important because we show that vaccinated animals can be protected from a mucosal challenge with a heterologous SIV, but the same animals are not necessarily protected from intravenous challenge with the same virus. This is unique because in most studies, either vaccinated animals are challenged multiple times by the same route or only a single challenge is performed. An individually vaccinated animal is rarely challenged multiple times by different routes, so protection from different challenge routes cannot be measured in the same animal. Our data imply that vaccine-elicited responses in an individual animal may be insufficient for protection from intravenous challenge but may be suitable for protection from a mucosal challenge that better approximates human immunodeficiency virus (HIV) exposure.


2002 ◽  
Vol 76 (8) ◽  
pp. 4108-4112 ◽  
Author(s):  
Todd M. Allen ◽  
Lorenzo Mortara ◽  
Bianca R. Mothé ◽  
Max Liebl ◽  
Peicheng Jing ◽  
...  

ABSTRACT The regulatory proteins of human immunodeficiency virus may represent important vaccine targets. Here we assessed the role of Tat-specific cytotoxic T lymphocytes (CTL) in controlling pathogenic simian immunodeficiency virus SIVmac239 replication after using a DNA-prime, vaccinia virus Ankara-boost vaccine regimen. Despite the induction of Tat-specific CTL, there was no significant reduction in either peak or viral set point compared to that of controls.


2001 ◽  
Vol 75 (11) ◽  
pp. 5151-5158 ◽  
Author(s):  
Dan H. Barouch ◽  
Sampa Santra ◽  
Marcelo J. Kuroda ◽  
Jörn E. Schmitz ◽  
Ronald Plishka ◽  
...  

ABSTRACT Since cytotoxic T lymphocytes (CTLs) are critical for controlling human immunodeficiency virus type 1 (HIV-1) replication in infected individuals, candidate HIV-1 vaccines should elicit virus-specific CTL responses. In this report, we study the immune responses elicited in rhesus monkeys by a recombinant poxvirus vaccine and the degree of protection afforded against a pathogenic simian-human immunodeficiency virus SHIV-89.6P challenge. Immunization with recombinant modified vaccinia virus Ankara (MVA) vectors expressing SIVmac239gag-pol and HIV-1 89.6 env elicited potent Gag-specific CTL responses but no detectable SHIV-specific neutralizing antibody (NAb) responses. Following intravenous SHIV-89.6P challenge, sham-vaccinated monkeys developed low-frequency CTL responses, low-titer NAb responses, rapid loss of CD4+ T lymphocytes, high-setpoint viral RNA levels, and significant clinical disease progression and death in half of the animals by day 168 postchallenge. In contrast, the recombinant MVA-vaccinated monkeys demonstrated high-frequency secondary CTL responses, high-titer secondary SHIV-89.6-specific NAb responses, rapid emergence of SHIV-89.6P-specific NAb responses, partial preservation of CD4+ T lymphocytes, reduced setpoint viral RNA levels, and no evidence of clinical disease or mortality by day 168 postchallenge. There was a statistically significant correlation between levels of vaccine-elicited CTL responses prior to challenge and the control of viremia following challenge. These results demonstrate that immune responses elicited by live recombinant vectors, although unable to provide sterilizing immunity, can control viremia and prevent disease progression following a highly pathogenic AIDS virus challenge.


2003 ◽  
Vol 77 (5) ◽  
pp. 3077-3083 ◽  
Author(s):  
Mirabelle Dagarag ◽  
Hwee Ng ◽  
Rachel Lubong ◽  
Rita B. Effros ◽  
Otto O. Yang

ABSTRACT Telomere length is abnormally short in the CD8+ T-cell compartment of human immunodeficiency virus type 1 (HIV-1)-infected persons, likely because of chronic cell turnover. Although clonal exhaustion of CD8+ cytotoxic T lymphocytes (CTL) has been proposed as a mechanism for loss of antigen-specific responses, the functional consequences of exhaustion are poorly understood. Here we used telomerase transduction to evaluate the impact of senescence on CTL effector functions. Constitutive expression of telomerase in an HIV-1-specific CTL clone results in enhanced proliferative capacity, in agreement with prior studies of other human cell types. Whereas the CTL remain phenotypically normal in terms of antigenic specificity and requirements for proliferation, their cytolytic and antiviral capabilities are superior to those of control CTL. In contrast, their ability to produce gamma interferon and RANTES is essentially unchanged. The selective enhancement of cytolytic function in memory CTL by ectopic telomerase expression implies that loss of this function (but not cytokine production) is a specific consequence of replicative senescence. These data suggest a unifying mechanism for the in vivo observations that telomere lengths are shortened in the CD8+ cells of HIV-1-infected persons and that HIV-1-specific CTL are deficient in perforin. Telomerase transduction could therefore be a tool with which to explore a potential therapeutic approach to an important pathophysiologic process of immune dysfunction in chronic viral infection.


Sign in / Sign up

Export Citation Format

Share Document