scholarly journals Human Immunodeficiency Virus Type 1 Gag-Specific Mucosal Immunity after Oral Immunization with Papillomavirus Pseudoviruses Encoding Gag

2004 ◽  
Vol 78 (19) ◽  
pp. 10249-10257 ◽  
Author(s):  
Hongtao Zhang ◽  
Raja Fayad ◽  
Xilin Wang ◽  
Daniel Quinn ◽  
Liang Qiao

ABSTRACT Mucosal surfaces are the primary portals for human immunodeficiency virus (HIV) transmission. Because systemic immunization, in general, does not induce effective mucosal immune responses, a mucosal HIV vaccine is urgently needed. For this study, we developed papillomavirus pseudoviruses that express HIV-1 Gag. The pseudoviruses are synthetic, nonreplicating viruses, yet they can produce antigens for a long time in the immune system. Here we show that oral immunization of mice by the use of papillomavirus pseudoviruses encoding Gag generated mucosal and systemic Gag-specific cytotoxic T lymphocytes that effectively lysed Gag-expressing target cells. Furthermore, the pseudoviruses generated Gag-specific gamma interferon-producing T cells and serum immunoglobulin G (IgG) and mucosal IgA. In contrast, oral immunization with plasmid DNA encoding HIV-1 Gag did not induce specific immune responses. Importantly, oral immunization with the pseudoviruses induced Gag-specific memory cytotoxic T lymphocytes and protected mice against a rectal mucosal challenge with a recombinant vaccinia virus expressing HIV-1 Gag. Thus, papillomavirus pseudoviruses encoding Gag are a promising mucosal vaccine against AIDS.

2006 ◽  
Vol 80 (22) ◽  
pp. 11141-11152 ◽  
Author(s):  
Stephanie Venzke ◽  
Nico Michel ◽  
Ina Allespach ◽  
Oliver T. Fackler ◽  
Oliver T. Keppler

ABSTRACT Lentiviral Nef proteins are key factors for pathogenesis and are known to downregulate functionally important molecules, including CD4 and major histocompatibility complex class I (MHC-I), from the surfaces of infected cells. Recently, we demonstrated that Nef reduces cell surface levels of the human immunodeficiency virus type 1 (HIV-1) entry coreceptor CCR5 (N. Michel, I. Allespach, S. Venzke, O. T. Fackler, and O. T. Keppler, Curr. Biol. 15:714-723, 2005). Here, we report that Nef downregulates the second major HIV-1 coreceptor, CXCR4, from the surfaces of HIV-infected primary CD4 T lymphocytes with efficiencies comparable to those of the natural CXCR4 ligand, stromal cell-derived factor-1 alpha. Analysis of a panel of mutants of HIV-1SF2 Nef revealed that the viral protein utilized the same signature motifs for downmodulation of CXCR4 and MHC-I, including the proline-rich motif P73P76P79P82 and the acidic cluster motif E66E67E68E69. Expression of wild-type Nef, but not of specific Nef mutants, resulted in a perinuclear accumulation of the coreceptor. Remarkably, the carboxy terminus of CXCR4, which harbors the classical motifs critical for basal and ligand-induced receptor endocytosis, was dispensable for the Nef-mediated reduction of surface exposure. Functionally, the ability of Nef to simultaneously downmodulate CXCR4 and CD4 correlated with maximum-level protection of Nef-expressing target cells from fusion with cells exposing X4 HIV-1 envelopes. Furthermore, the Nef-mediated downregulation of CXCR4 alone on target T lymphocytes was sufficient to diminish cells' susceptibility to X4 HIV-1 virions at the entry step. The downregulation of chemokine coreceptors is a conserved activity of Nef to modulate infected cells, an important functional consequence of which is an enhanced resistance to HIV superinfection.


2001 ◽  
Vol 75 (17) ◽  
pp. 8306-8316 ◽  
Author(s):  
Ralf Geiben-Lynn ◽  
Mischo Kursar ◽  
Nancy V. Brown ◽  
Ethan L. Kerr ◽  
Andrew D. Luster ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) mediate immunologic selection pressure by both cytolytic and noncytolytic mechanisms. Non cytolytic mechanisms include the release of β-chemokines blocking entry of R5 HIV-1 strains. In addition, CD8+ cells inhibit X4 virus isolates via release of as yet poorly characterized soluble factors. To further characterize these factors, we performed detailed analysis of CTL as well as bulk CD8+ T lymphocytes from six HIV-1-infected individuals and from six HIV-1-seronegative individuals. Kinetic studies revealed that secreted suppressive activities of HIV-1-specific CTL and bulk CD8+ T lymphocytes from all HIV-1-infected persons are significantly higher than that of supernatants from seronegative controls. The suppressive activity could be blocked by monensin and brefeldin A, was heat labile, and appeared in a pattern different from that of secretion of chemokines (MDC, I-309, MIP-1α, MIP-1β, and RANTES), cytokines (gamma interferon, tumor necrosis factor alpha, and granulocyte-macrophage colony-stimulating factor), and interleukins (interleukin-13 and interleukin-16). This suppression activity was characterized by molecular size exclusion centrifugation and involves a suppressive activity of >50 kDa which could be bound to heparin and a nonbinding inhibitory activity of <50 kDa. Our data provide a functional link between CD8+ cells and CTL in the noncytolytic inhibition of HIV-1 and suggest that suppression of X4 virus is mediated through proteins. The sizes of the proteins, their affinity for heparin, and the pattern of release indicate that these molecules are not chemokines.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3084-3093 ◽  
Author(s):  
Premlata Shankar ◽  
Zhan Xu ◽  
Judy Lieberman

Cytotoxic T lymphocytes (CTL) lyse antigen-bearing target cells by two distinct pathways. Whereas granule exocytosis targets any antigen-bearing cell, fas-mediated cytotoxicity kills only fas-expressing cells and does not require antigen expression. Fas pathway activation can potentially lead to lysis of uninfected bystander cells. We examined the relative usage of the two pathways by CTL clones and cell lines directed against four different human immunodeficiency virus (HIV) proteins in lysing primary HIV-infected targets. Although fas was expressed on HIV-infected primary CD4+ T cells, their lysis by antigen-specific CD8+ CTL was only by the granule pathway. Fas ligand (fasL) was not detectable on antigen-specific CD8 clones, T-cell lines, or circulating HIV-specific CD8 T cells from HIV-infected donors, stained with a tetrameric HLA-A2-HIV-peptide complex. FasL expression by HIV-specific CTL clones was not activated by exposure to HIV-presenting cells, but was after unphysiological stimulation with phorbol myristate acetate (PMA). CTL clones did not lyse bystander Jurkat cells, but HIV-infected primary CD4+ T cells lysed uninfected bystander cells by the fas-mediated pathway. These results suggest that HIV-specific CD8+ CTL do not cause HIV immunopathology by lysing bystander cells. On the contrary, fas-mediated lysis of uninfected cells by HIV-infected cells may contribute to CD4 decline.


1994 ◽  
Vol 180 (4) ◽  
pp. 1283-1293 ◽  
Author(s):  
T J Tsomides ◽  
A Aldovini ◽  
R P Johnson ◽  
B D Walker ◽  
R A Young ◽  
...  

We have established long-term cultures of several cell lines stably and uniformly expressing human immunodeficiency virus type 1 (HIV-1) in order to (a) identify naturally processed HIV-1 peptides recognized by cytotoxic T lymphocytes (CTL) from HIV-1-seropositive individuals and (b) consider the hypothesis that naturally occurring epitope densities on HIV-infected cells may limit their lysis by CTL. Each of two A2-restricted CD8+ CTL specific for HIV-1 gag or reverse transcriptase (RT) recognized a single naturally processed HIV-1 peptide in trifluoroacetic acid (TFA) extracts of infected cells: gag 77-85 (SLYNTVATL) or RT 476-484 (ILKEPVHGV). Both processed peptides match the synthetic peptides that are optimally active in cytotoxicity assays and have the consensus motif described for A2-associated peptides. Their abundances were approximately 400 and approximately 12 molecules per infected Jurkat-A2 cell, respectively. Other synthetic HIV-1 peptides active at subnanomolar concentrations were not present in infected cells. Except for the antigen processing mutant line T2, HIV-infected HLA-A2+ cell lines were specifically lysed by both A2-restricted CTL, although infected Jurkat-A2 cells were lysed more poorly by RT-specific CTL than by gag-specific CTL, suggesting that low cell surface density of a natural peptide may limit the effectiveness of some HIV-specific CTL despite their vigorous activity against synthetic peptide-treated target cells.


2005 ◽  
Vol 18 (4) ◽  
pp. 627-636 ◽  
Author(s):  
Matthias Schmitt-Haendle ◽  
Oliver Bachmann ◽  
Ellen Harrer ◽  
Barbara Schmidt ◽  
Michael Bäuerle ◽  
...  

2015 ◽  
Vol 23 (3) ◽  
pp. 204-212 ◽  
Author(s):  
Rajesh Thippeshappa ◽  
Baoping Tian ◽  
Brad Cleveland ◽  
Wenjin Guo ◽  
Patricia Polacino ◽  
...  

ABSTRACTHuman immunodeficiency virus type 1 (HIV-1) acquisition occurs predominantly through mucosal transmission. We hypothesized that greater mucosal immune responses and protective efficacy against mucosal HIV-1 infection may be achieved by prime-boost immunization at mucosal sites. We used a macaque model to determine the safety, immunogenicity, and protective efficacy of orally delivered, replication-competent but attenuated recombinant vaccinia viruses expressing full-length HIV-1 SF162 envelope (Env) or simian immunodeficiency virus (SIV) Gag-Pol proteins. We examined the dose and route that are suitable for oral immunization with recombinant vaccinia viruses. We showed that sublingual inoculation of two vaccinia virus-naive pigtailed macaques with 5 × 108PFU of recombinant vaccinia viruses was safe. However, sublingual inoculation with a higher dose or tonsillar inoculation resulted in secondary oral lesions, indicating the need to optimize the dose and route for oral immunization with replication-competent vaccinia virus vectors. Oral priming alone elicited antibody responses to vaccinia virus and to the SF162 Env protein. Intramuscular immunization with the SF162 gp120 protein at either 20 or 21 weeks postpriming resulted in a significant boost in antibody responses in both systemic and mucosal compartments. Furthermore, we showed that immune responses induced by recombinant vaccinia virus priming and intramuscular protein boosting provided protection against intrarectal challenge with the simian-human immunodeficiency virus SHIV-SF162-P4.


1999 ◽  
Vol 73 (1) ◽  
pp. 797-800 ◽  
Author(s):  
G. S. Ogg ◽  
X. Jin ◽  
S. Bonhoeffer ◽  
P. Moss ◽  
M. A. Nowak ◽  
...  

ABSTRACT Little is known of the changes in human immunodeficiency virus type 1 (HIV-1)-specific effector cytotoxic T lymphocytes (CTL) after potent antiretroviral therapy. Using HLA/peptide tetrameric complexes, we show that after starting treatment, there are early rapid fluctuations in the HIV-1-specific CTL response which last 1 to 2 weeks. These fluctuations are followed by an exponential decay (median half-life, 45 days) of HIV-1-specific CTL which continues while viremia remains undetectable. These data have implications for the immunological control of drug-resistant virus.


2001 ◽  
Vol 75 (3) ◽  
pp. 1152-1164 ◽  
Author(s):  
Mark T. Esser ◽  
Julian W. Bess ◽  
Kalachar Suryanarayana ◽  
Elena Chertova ◽  
Darlene Marti ◽  
...  

ABSTRACT Increased levels of apoptosis are seen in human immunodeficiency virus (HIV) infection, and this has been proposed as an important mechanism contributing to HIV pathogenesis. However, interpretation of in vitro studies aimed at understanding HIV-related apoptosis has been complicated by the use of high concentrations of recombinant proteins or by direct cytopathic effects of replicating virus. We have developed an inactivation procedure that destroys retroviral infectivity while preserving the structural and functional integrity of the HIV surface proteins. These noninfectious virions interact authentically with target cells, providing a powerful tool to dissect mechanisms of HIV pathogenesis that do or do not require viral replication. Noninfectious CXCR4-tropic HIV-1 virions, but not microvesicles, partially activated freshly isolated CD4+ and CD8+ peripheral blood mononuclear cell T lymphocytes to express FasL and Fas, but not CD69 or CD25 (interleukin-2 receptor alpha) and eventually die via apoptosis starting 4 to 6 days postexposure. These effects required conformationally intact virions, as heat-denatured virions or equivalent amounts of recombinant gp120 did not induce apoptosis. The maximal apoptotic effect was dependent on major histocompatibility complex (MHC) class II proteins being present on the virion, but was not MHC restricted. The results suggest that the immunopathogenesis of HIV infection may not depend solely on direct cytopathic effects of HIV replication, but that effects due to noninfectious HIV-1 virions may also contribute importantly.


Sign in / Sign up

Export Citation Format

Share Document