scholarly journals Use of Adenovirus Vectors Expressing Epstein-Barr Virus (EBV) Immediate-Early Protein BZLF1 or BRLF1 To Treat EBV-Positive Tumors

2002 ◽  
Vol 76 (21) ◽  
pp. 10951-10959 ◽  
Author(s):  
Wen-hai Feng ◽  
Eva Westphal ◽  
Amy Mauser ◽  
Nancy Raab-Traub ◽  
Margaret L. Gulley ◽  
...  

ABSTRACT The Epstein-Barr virus (EBV) genome is present in a variety of tumor types, including virtually all undifferentiated nasopharyngeal carcinomas (NPC) and a portion of gastric carcinomas. The uniform presence of the EBV genome in certain tumors (versus only a very small number of normal B cells) suggests that novel therapies which specifically target EBV-positive cells for destruction might be effective for treating such tumors. Although the great majority of EBV-positive tumor cells are infected with one of the latent forms of EBV infection, expression of either viral immediate-early protein (BZLF1 or BRLF1) is sufficient to convert the virus to the lytic form of infection. Induction of the lytic form of EBV infection could potentially result in death of the tumor cell. Here we have examined the efficacy of adenovirus vectors expressing the BZLF1 or BRLF1 proteins for treatment of EBV-positive epithelial tumors. The BZLF1 and BRLF1 vectors induced preferential killing of EBV-positive, versus EBV-negative, gastric carcinoma cells in vitro. Infection of C18 NPC tumors (grown in nude mice) with either the BZLF1 or BRLF1 vector, but not a control adenovirus vector, induced expression of early lytic EBV genes in tumor cells. Injection of C18 tumors with the BZLF1 or BRLF1 adenovirus vector, but not the control vector, also significantly inhibited growth of the tumors in nude mice. The addition of ganciclovir did not significantly affect the antitumor effect of the BZLF1 and BRLF1 adenovirus vectors. These results suggest a potential cancer therapy against EBV-related tumors.

2000 ◽  
Vol 74 (3) ◽  
pp. 1224-1233 ◽  
Author(s):  
Amy L. Adamson ◽  
Dayle Darr ◽  
Elizabeth Holley-Guthrie ◽  
Robert A. Johnson ◽  
Amy Mauser ◽  
...  

ABSTRACT Expression of either Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) or BRLF1 (R) is sufficient to convert EBV infection from the latent to lytic form. Disruption of viral latency requires transcriptional activation of the Z and R promoters. The Z and R proteins are transcriptional activators, and each immediate-early protein activates expression of the other immediate-early protein. Z activates the R promoter through a direct binding mechanism. However, R does not bind directly to the Z promoter. In this study, we demonstrate that the ZII element (a cyclic AMP response element site) in the Z promoter is required for efficient activation by R. The ZII element has been shown to be important for induction of lytic EBV infection by tetradecanoyl phorbol acetate and surface immunoglobulin cross-linking and is activated by Z through an indirect mechanism. We demonstrate that both R and Z activate the cellular stress mitogen-activated protein (MAP) kinases, p38 and JNK, resulting in phosphorylation (and activation) of the cellular transcription factor ATF2. Furthermore, we show that the ability of R to induce lytic EBV infection in latently infected cells is significantly reduced by inhibition of either the p38 kinase or JNK pathways. In contrast, inhibition of stress MAP kinase pathways does not impair the ability of Z expression vectors to disrupt viral latency, presumably because expression of Z under the control of a strong heterologous promoter bypasses the need to activate Z transcription. Thus, both R and Z can activate the Z promoter indirectly by inducing ATF2 phosphorylation, and this activity appears to be important for R-induced disruption of viral latency.


2009 ◽  
Vol 90 (10) ◽  
pp. 2331-2341 ◽  
Author(s):  
Koichi Ricardo Katsumura ◽  
Seiji Maruo ◽  
Yi Wu ◽  
Teru Kanda ◽  
Kenzo Takada

The Epstein–Barr virus (EBV) immediate-early transactivator BZLF1 plays a key role in switching EBV infection from the latent to the lytic form by stimulating the expression cascade of lytic genes; it also regulates the expression of several cellular genes. Recently, we reported that BZLF1 is expressed in primary human B cells early after EBV infection. To investigate whether this BZLF1 expression early after infection plays a role in the EBV-induced growth transformation of primary B cells, we generated BZLF1-knockout EBV and quantitatively evaluated its transforming ability compared with that of wild-type EBV. We found that the 50 % transforming dose of BZLF1-knockout EBV was quite similar to that of wild-type EBV. Established lymphoblastoid cell lines (LCLs) harbouring BZLF1-knockout EBV were indistinguishable from LCLs harbouring wild-type EBV in their pattern of latent gene expression and in their growth in vitro. Furthermore, the copy numbers of EBV episomes were very similar in the LCLs harbouring BZLF1-knockout EBV and in those harbouring wild-type EBV. These data indicate that disrupting BZLF1 expression in the context of the EBV genome, and the resultant inability to enter lytic replication, have little impact on the growth of LCLs and the steady-state copy number of EBV episomes in established LCLs.


2004 ◽  
Vol 78 (10) ◽  
pp. 4983-4992 ◽  
Author(s):  
Gregory K. Hong ◽  
Henri-Jacques Delecluse ◽  
Henri Gruffat ◽  
Thomas E. Morrison ◽  
Wen-Hai Feng ◽  
...  

ABSTRACT The switch from the latent to the lytic form of Epstein-Barr virus (EBV) infection is mediated by expression of the viral immediate-early (IE) proteins, BZLF1 (Z) and BRLF1 (R). An EBV early protein, BRRF1 (Na), is encoded by the opposite strand of the BRLF1 intron, but the function of this nuclear protein in the viral life cycle is unknown. Here we demonstrate that Na enhances the R-mediated induction of lytic EBV infection in 293 cells latently infected with a recombinant EBV (R-KO) defective for the expression of both R and Na. Na also enhances R-induced lytic infections in a gastric carcinoma line (AGS) carrying the R-KO virus, although it has no effect in a Burkitt lymphoma line (BL-30) stably infected with the same mutant virus. We show that Na is a transcription factor that increases the ability of R to activate Z expression from the R-KO viral genome in 293 cells and that Na by itself activates the Z promoter (Zp) in EBV-negative cells. Na activation of Zp requires a CRE motif (ZII), and a consensus CRE motif is sufficient to transfer Na responsiveness to the heterologous E1b promoter. Furthermore, we show that Na enhances the transactivator function of a Gal4-c-Jun fusion protein but does not increase the transactivator function of other transcription factors (including ATF-1, ATF-2, and CREB) known to bind CRE motifs. Na expression in cells results in increased levels of a hyperphosphorylated form of c-Jun, suggesting a mechanism by which Na activates c-Jun. Our results indicate that Na is a transcription factor that activates the EBV Zp IE promoter through its effects on c-Jun and suggest that Na cooperates with BRLF1 to induce the lytic form of EBV infection in certain cell types.


2001 ◽  
Vol 75 (13) ◽  
pp. 6135-6142 ◽  
Author(s):  
Catherine Dayle Darr ◽  
Amy Mauser ◽  
Shannon Kenney

ABSTRACT Expression of the Epstein-Barr virus (EBV) immediate-early (IE) protein BRLF1 induces the lytic form of viral replication in most EBV-positive cell lines. BRLF1 is a transcriptional activator that binds directly to a GC-rich motif present in some EBV lytic gene promoters. However, BRLF1 activates transcription of the other IE protein, BZLF1, through an indirect mechanism which we previously showed to require activation of the stress mitogen-activated protein kinases. Here we demonstrate that BRLF1 activates phosphatidylinositol-3 (PI3) kinase signaling in host cells. We show that the specific PI3 kinase inhibitor, LY294002, completely abrogates the ability of a BRLF1 adenovirus vector to induce the lytic form of EBV infection, while not affecting lytic infection induced by a BZLF1 adenovirus vector. Furthermore, we demonstrate that the requirement for PI3 kinase activation in BRLF1-induced transcriptional activation is promoter dependent. BRLF1 activation of the SM early promoter (which occurs through a direct binding mechanism) does not require PI3 kinase activation, whereas activation of the IE BZLF1 and early BMRF1 promoters requires PI3 kinase activation. Thus, there are clearly two separate mechanisms by which BRLF1 induces transcriptional activation.


2001 ◽  
Vol 75 (5) ◽  
pp. 2388-2399 ◽  
Author(s):  
Amy L. Adamson ◽  
Shannon Kenney

ABSTRACT Although the immediate-early proteins of both herpes simplex virus (HSV) and cytomegalovirus (CMV) are known to modify promyelocytic leukemia (PML) (ND10) bodies in the nucleus of the host cell, it has been unclear whether lytic infection with gamma herpesviruses induces a similar effect. The PML protein is induced by interferon, involved in major histocompatibility complex class I presentation, and necessary for certain types of apoptosis. Therefore, it is likely that PML bodies function in an antiviral capacity. SUMO-1 modification of PML is known to be required for the formation of PML bodies. To examine whether Epstein-Barr virus (EBV) lytic replication interferes with PML bodies, we expressed the EBV immediate-early genes BZLF1 (Z) and BRLF1 (R) in EBV-positive cell lines and examined PML localization. Both Z and R expression resulted in PML dispersion in EBV-positive cells. Z but not R expression is sufficient to disrupt PML bodies in EBV-negative cell lines. We show that dispersion of PML bodies by Z requires a portion of the transcriptional activation domain of Z but not the DNA-binding function. As was previously reported for the HSV-1 ICP0 and CMV IE1 proteins, Z reduces the amount of SUMO-1-modified PML. We also found that Z itself is SUMO-1 modified (through amino acid 12) and that Z competes with PML for limiting amounts of SUMO-1. These results suggest that disruption of PML bodies is important for efficient lytic replication of EBV. Furthermore, Z may potentially alter the function of a variety of cellular proteins by inhibiting SUMO-1 modification.


Immunity ◽  
2001 ◽  
Vol 15 (5) ◽  
pp. 787-799 ◽  
Author(s):  
Thomas E Morrison ◽  
Amy Mauser ◽  
Athena Wong ◽  
Jenny P.-Y Ting ◽  
Shannon C Kenney

Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 2918-2929 ◽  
Author(s):  
H Herbst ◽  
HD Foss ◽  
J Samol ◽  
I Araujo ◽  
H Klotzbach ◽  
...  

Tumor cells of Epstein-Barr virus (EBV)-associated Hodgkin's disease (HD) express the viral protein, latent infection membrane protein-1 (LMP1), but evade cytotoxic responses normally directed at this antigen. We tested whether local production of the immunoregulatory interleukins (IL)-4 and -10 may have a role in this process. IL-4 RNA was not detectable in any of the HD cases. By contrast, isotopic in situ hybridization and correlation with the presence of EBV gene products showed significantly higher proportions of cases with IL-10 expressing tumor cells in LMP1-positive (17 of 26, 66%) as compared with LMP1-negative HD cases (six of 37, 16%). Absence of EBV BCRF1 RNA indicated that the transcripts originated from the cellular IL-10 gene. Similarly, an association between IL-10 expression and EBV-infection of tumor cells was found in AIDS-related malignant non-Hodgkin lymphomas (ARL). Very small proportions of EBV-infected cells, mainly blasts, expressed IL-10 in infectious mononucleosis tonsils. Thus, although not entirely exclusive to EBV-positive cases, IL-10 expression is frequently associated with EBV-infection in HD and ARL and appears to be upregulated by EBV, most likely through LMP1. In view of the established inhibitory effects of IL-10 on cell mediated immunity, it is suggested that IL-10 expression may contribute to evasion of LMP1- positive cells from cytotoxicity directed at viral antigens.


Virology ◽  
2009 ◽  
Vol 388 (1) ◽  
pp. 204-211 ◽  
Author(s):  
Yoshitaka Sato ◽  
Noriko Shirata ◽  
Ayumi Kudoh ◽  
Satoko Iwahori ◽  
Sanae Nakayama ◽  
...  

2006 ◽  
Vol 81 (2) ◽  
pp. 1037-1042 ◽  
Author(s):  
Wangrong Wen ◽  
Dai Iwakiri ◽  
Koji Yamamoto ◽  
Seiji Maruo ◽  
Teru Kanda ◽  
...  

ABSTRACT We demonstrate here that the Epstein-Barr virus (EBV) BZLF1 gene, a switch from latent infection to lytic infection, is expressed as early as 1.5 h after EBV infection in Burkitt's lymphoma-derived, EBV-negative Akata and Daudi cells and primary B lymphocytes. Since BZLF1 mRNA is expressed even when the cells are infected with EBV in the presence of anisomycin, an inhibitor of protein synthesis, its expression does not require prerequisite protein synthesis, indicating that BZLF1 is expressed as an immediate-early gene following primary EBV infection of B lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document