scholarly journals De Novo Synthesis of Negative-Strand RNA by Dengue Virus RNA-Dependent RNA Polymerase In Vitro: Nucleotide, Primer, and Template Parameters

2003 ◽  
Vol 77 (16) ◽  
pp. 8831-8842 ◽  
Author(s):  
Masako Nomaguchi ◽  
Matt Ackermann ◽  
Changsuek Yon ◽  
Shihyun You ◽  
R. Padmanbhan

ABSTRACT By using a purified dengue virus RNA-dependent RNA polymerase and a subgenomic 770-nucleotide RNA template, it was shown previously that the ratio of the de novo synthesis product to hairpin product formed was inversely proportional to increments of assay temperatures (20 to 40°C). In this study, the components of the de novo preinitiation complex are defined as ATP, a high concentration of GTP (500 μM), the polymerase, and the template RNA. Even when the 3′-terminal sequence of template RNA was mutated from -GGUUCU-3′ to -GGUUUU-3′, a high GTP concentration was required for de novo initiation, suggesting that high GTP concentration plays a conformational role. Furthermore, utilization of synthetic primers by the polymerase indicated that AGAA is the optimal primer whereas AG, AGA, and AGAACC were inefficient primers. Moreover, mutational analysis of the highly conserved 3′-terminal dinucleotide CU of the template RNA indicated that change of the 3′-terminal nucleotide from U to C reduced the efficiency about fivefold. The order of preference for the 3′-terminal nucleotide, from highest to lowest, is U, A∼G, and C. However, change of the penultimate nucleotide from C to U did not affect the template activity. A model consistent with these results is that the active site of the polymerase switches from a “closed” form, catalyzing de novo initiation through synthesis of short primers, to an “open” form for elongation of a double-stranded template-primer.

2003 ◽  
Vol 77 (19) ◽  
pp. 10730-10730 ◽  
Author(s):  
Masako Nomaguchi ◽  
Matt Ackermann ◽  
Changsuek Yon ◽  
Shihyun You ◽  
R. Padmanabhan

2011 ◽  
Vol 286 (38) ◽  
pp. 33095-33108 ◽  
Author(s):  
Michal R. Szymanski ◽  
Maria J. Jezewska ◽  
Paul J. Bujalowski ◽  
Cecile Bussetta ◽  
Mengyi Ye ◽  
...  

2013 ◽  
Vol 87 (9) ◽  
pp. 5291-5295 ◽  
Author(s):  
C. G. Noble ◽  
S. P. Lim ◽  
Y.-L. Chen ◽  
C. W. Liew ◽  
L. Yap ◽  
...  

2011 ◽  
Vol 16 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Pornwaratt Niyomrattanakit ◽  
Siti Nurdiana Abas ◽  
Chin Chin Lim ◽  
David Beer ◽  
Pei-Yong Shi ◽  
...  

The flaviviral RNA-dependent RNA polymerase (RdRp) is an attractive drug target. To discover new inhibitors of dengue virus RdRp, the authors have developed a fluorescence-based alkaline phosphatase–coupled polymerase assay (FAPA) for high-throughput screening (HTS). A modified nucleotide analogue (2′-[2-benzothiazoyl]-6′-hydroxybenzothiazole) conjugated adenosine triphosphate (BBT-ATP) and 3′UTR-U30 RNA were used as substrates. After the polymerase reaction, treatment with alkaline phosphatase liberates the BBT fluorophore from the polymerase reaction by-product, BBTPPi, which can be detected at excitation and emission wavelengths of 422 and 566 nm, respectively. The assay was evaluated by examining the time dependency, assay reagent effects, reaction kinetics, and signal stability and was validated with 3′dATP and an adenosine-nucleotide triphosphate inhibitor, giving IC50 values of 0.13 µM and 0.01 µM, respectively. A pilot screen of a diverse compound library of 40,572 compounds at 20 µM demonstrated good performance with an average Z factor of 0.81. The versatility and robustness of FAPA were evaluated with another substrate system, BBT-GTP paired with 3′UTR-C30 RNA. The FAPA method presented here can be readily adapted for other nucleotide-dependent enzymes that generate PPi.


2002 ◽  
Vol 76 (4) ◽  
pp. 1707-1717 ◽  
Author(s):  
K. S. Rajendran ◽  
J. Pogany ◽  
P. D Nagy

ABSTRACT Turnip crinkle virus (TCV) is a small, plus-sense, single-stranded RNA virus of plants. A virus-coded protein, p88, which is required for replication has been expressed and purified from Escherichia coli. In vitro assays revealed that the recombinant p88 has an RNA-dependent RNA polymerase (RdRp) activity and can also bind to RNA. Deletion of the N-terminal region in p88 resulted in a more active RdRp, while further deletions abolished RdRp activity. Comparison of the E. coli-expressed p88, the N-terminal deletion mutant of p88, and a TCV RdRp preparation obtained from infected plants revealed that these preparations show remarkable similarities in RNA template recognition and usage. Both the recombinant and the plant TCV RdRp preparations are capable of de novo initiation on both plus- and minus-strand satC and satD templates, which are small parasitic RNAs associated with TCV infections. In addition, these RdRp preparations can efficiently recognize the related Tomato bushy stunt virus promoter sequences, including the minus- and plus-strand initiation promoters. Heterologous viral and artificial promoters are recognized poorly by the recombinant and the plant TCV RdRps. Further comparison of the single-component recombinant TCV RdRp and the multicomponent plant TCV RdRp will help dissect the functions of various components of the TCV replicase.


2005 ◽  
Vol 86 (2) ◽  
pp. 521-526 ◽  
Author(s):  
Minni R. L. Laurila ◽  
Paula S. Salgado ◽  
David I. Stuart ◽  
Jonathan M. Grimes ◽  
Dennis H. Bamford

The RNA-dependent RNA polymerase of the double-stranded RNA bacteriophage ϕ6 is capable of primer-independent initiation, as are many RNA polymerases. The structure of this polymerase revealed an initiation platform, composed of a loop in the C-terminal domain (QYKW, aa 629–632), that was essential for de novo initiation. A similar element has been identified in hepatitis C virus RNA-dependent RNA polymerase. Biochemical studies have addressed the role of this platform, revealing that a mutant version can utilize a back-priming initiation mechanism, where the 3′ terminus of the template adopts a hairpin-like conformation. Here, the mechanism of back-primed initiation is studied further by biochemical and structural methods.


Sign in / Sign up

Export Citation Format

Share Document