scholarly journals Human Cytomegalovirus UL99-Encoded pp28 Is Required for the Cytoplasmic Envelopment of Tegument-Associated Capsids

2003 ◽  
Vol 77 (19) ◽  
pp. 10594-10605 ◽  
Author(s):  
Maria C. Silva ◽  
Qian-Chun Yu ◽  
Lynn Enquist ◽  
Thomas Shenk

ABSTRACT The human cytomegalovirus UL99-encoded pp28 is a myristylated phosphoprotein that is a constituent of the virion. The pp28 protein is positioned within the tegument of the virus particle, a protein structure that resides between the capsid and envelope. In the infected cell, pp28 is found in a cytoplasmic compartment derived from the Golgi apparatus, where the virus buds into vesicles to acquire its final membrane. We have constructed two mutants of human cytomegalovirus that fail to produce the pp28 protein, a substitution mutant (BADsubUL99) and a point mutant (BADpmUL99), and we have propagated them by complementation in pp28-expressing fibroblasts. Both mutant viruses are profoundly defective for growth in normal fibroblasts; no infectious virus could be detected after infection. Whereas normal levels of viral DNA and late proteins were observed in mutant virus-infected cells, large numbers of tegument-associated capsids accumulated in the cytoplasm that failed to acquire an envelope. We conclude that pp28 is required for the final envelopment of the human cytomegalovirus virion in the cytoplasm.

2009 ◽  
Vol 84 (4) ◽  
pp. 1771-1784 ◽  
Author(s):  
Blair L. Strang ◽  
Steeve Boulant ◽  
Donald M. Coen

ABSTRACT In the eukaryotic cell, DNA replication entails the interaction of multiple proteins with the DNA polymerase processivity factor PCNA. As the structure of the presumptive human cytomegalovirus (HCMV) DNA polymerase processivity factor UL44 is highly homologous to that of PCNA, we hypothesized that UL44 also interacts with numerous proteins. To investigate this possibility, recombinant HCMV expressing FLAG-tagged UL44 was generated and used to immunoprecipitate UL44 and associated proteins from infected cell lysates. Unexpectedly, nucleolin, a major protein component of the nucleolus, was identified among these proteins by mass spectrometry and Western blotting. The association of nucleolin and UL44 in infected cell lysate was confirmed by reciprocal coimmunoprecipitation in the presence and absence of nuclease. Western blotting and immunofluorescence assays demonstrated that the level of nucleolin increases during infection and that nucleolin becomes distributed throughout the nucleus. Furthermore, the colocalization of nucleolin and UL44 in infected cell nuclei was observed by immunofluorescence assays. Assays of HCMV-infected cells treated with small interfering RNA (siRNA) targeting nucleolin mRNA indicated that nucleolin was required for efficient virus production, viral DNA synthesis, and the expression of a late viral protein, with a correlation between the efficacy of knockdown and the effect on virus replication. In contrast, the level of neither global protein synthesis nor the replication of an unrelated virus (reovirus) was reduced in siRNA-treated cells. Taken together, our results indicate an association of nucleolin and UL44 in HCMV-infected cells and a role for nucleolin in viral DNA synthesis.


2006 ◽  
Vol 80 (12) ◽  
pp. 5886-5896 ◽  
Author(s):  
Veronica Sanchez ◽  
Deborah H. Spector

ABSTRACT We have previously shown that the addition of the cyclin-dependent kinase (cdk) inhibitor Roscovitine at the beginning of infection of cells with human cytomegalovirus (HCMV) significantly disrupts immediate-early gene expression and the progression of the infection. In the present study, we have examined the effects of cdk inhibition on late viral events by delaying addition of Roscovitine until 24 h postinfection. Although viral DNA replication was inhibited two- to threefold by treatment of infected cells with Roscovitine, the drop did not correspond to the 1- to 2-log-unit decrease in virus titer. Quantification of viral DNA in the supernatant from cells revealed that there was a significant reduction in the production or release of extracellular particles. We observed a lag in the expression of several viral proteins but there was a significant decrease in the steady-state levels of IE2-86. Likewise, the steady-state level of the essential tegument protein UL32 (pp150) was reduced. The levels of pp150 and IE2-86 mRNA were not greatly affected by treatment with Roscovitine and thus did not correlate with the reduced levels of protein. In contrast, the expression of the tegument protein ppUL69 was higher in drug-treated samples, and the protein accumulated in a hyperphosphorylated form. ppUL69 localized to intranuclear aggregates that did not overlap with viral replication centers in cells treated with Roscovitine. Taken together, these data indicate that cdk activity is required at multiple steps during HCMV infection, including the expression, modification, and localization of virus-encoded proteins.


2007 ◽  
Vol 82 (5) ◽  
pp. 2065-2078 ◽  
Author(s):  
Eva Maria Borst ◽  
Karen Wagner ◽  
Anne Binz ◽  
Beate Sodeik ◽  
Martin Messerle

ABSTRACT Replication of human cytomegalovirus (HCMV) produces large DNA concatemers of head-to-tail-linked viral genomes that upon packaging into capsids are cut into unit-length genomes. The mechanisms underlying cleavage-packaging and the subsequent steps prior to nuclear egress of DNA-filled capsids are incompletely understood. The hitherto uncharacterized product of the essential HCMV UL52 gene was proposed to participate in these processes. To investigate the function of pUL52, we constructed a ΔUL52 mutant as well as a complementing cell line. We found that replication of viral DNA was not impaired in noncomplementing cells infected with the ΔUL52 virus, but viral concatemers remained uncleaved. Since the subnuclear localization of the known cleavage-packaging proteins pUL56, pUL89, and pUL104 was unchanged in ΔUL52-infected fibroblasts, pUL52 does not seem to act via these proteins. Electron microscopy studies revealed only B capsids in the nuclei of ΔUL52-infected cells, indicating that the mutant virus has a defect in encapsidation of viral DNA. Generation of recombinant HCMV genomes encoding epitope-tagged pUL52 versions showed that only the N-terminally tagged pUL52 supported viral growth, suggesting that the C terminus is crucial for its function. pUL52 was expressed as a 75-kDa protein with true late kinetics. It localized preferentially to the nuclei of infected cells and was found to enclose the replication compartments. Taken together, our results demonstrate an essential role for pUL52 in cleavage-packaging of HCMV DNA. Given its unique subnuclear localization, the function of pUL52 might be distinct from that of other cleavage-packaging proteins.


2006 ◽  
Vol 80 (17) ◽  
pp. 8371-8378 ◽  
Author(s):  
Xuyan Feng ◽  
Jörg Schröer ◽  
Dong Yu ◽  
Thomas Shenk

ABSTRACT We have characterized the function of the human cytomegalovirus US24 gene, a US22 gene family member. Two US24-deficient mutants (BADinUS24 and BADsubUS24) exhibited a 20- to 30-fold growth defect, compared to their wild-type parent (BADwt), after infection at a relatively low (0.01 PFU/cell) or high (1 PFU/cell) input multiplicity. Representative virus-encoded proteins and viral DNA accumulated with normal kinetics to wild-type levels after infection with mutant virus when cells received equal numbers of mutant and wild-type infectious units. Further, the proteins were properly localized and no ultrastructural differences were found by electron microscopy in mutant-virus-infected cells compared to wild-type-virus-infected cells. However, virions produced by US24-deficient mutants had a 10-fold-higher genome-to-PFU ratio than wild-type virus. When infections were performed using equal numbers of input virus particles, the expression of immediate-early, early, and late viral proteins was substantially delayed and decreased in the absence of US24 protein. This delay is not due to inefficient virus entry, since two tegument proteins and viral DNA moved to the nucleus equally well in mutant- and wild-type-virus-infected cells. In summary, US24 is a virion protein and virions produced by US24-deficient viruses exhibit a block to the human cytomegalovirus replication cycle after viral DNA reaches the nucleus and before immediate-early mRNAs are transcribed.


2002 ◽  
Vol 76 (10) ◽  
pp. 5147-5155 ◽  
Author(s):  
Michael A. Jarvis ◽  
Kenneth N. Fish ◽  
Cecilia Söderberg-Naucler ◽  
Daniel N. Streblow ◽  
Heather L. Meyers ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) is a prototypic member of the betaherpesvirus family. The HCMV virion is composed of a large DNA genome encapsidated within a nucleocapsid, which is wrapped within an inner proteinaceous tegument and an outer lipid envelope containing viral glycoproteins. Although genome encapsidation clearly occurs in the nucleus, the subsequent steps in the virion assembly process are unclear. HCMV glycoprotein B (gB) is a major component of the virion envelope that plays a critical role in virus entry and is essential for the production of infectious virus progeny. The aim of our present study was to identify the secretory compartment to which HCMV gB was localized and to investigate the role of endocytosis in mediating gB localization and HCMV biogenesis. We show that HCMV gB is localized to the trans-Golgi network (TGN) in HCMV-infected cells and that gB contains all of the trafficking information necessary for TGN localization. Endocytosis of gB was shown to play a role in mediating TGN localization of gB and in targeting of the protein to the site of virus envelopment. However, inhibition of endocytosis with a dominant-negative dynamin I molecule did not affect the production of infectious virus. These observations indicate that, although endocytosis is involved in the trafficking of gB to the site of glycoprotein accumulation in the TGN, endocytosis of gB is not required for the production of infectious HCMV.


1997 ◽  
Vol 41 (12) ◽  
pp. 2680-2685 ◽  
Author(s):  
D J Tenney ◽  
G Yamanaka ◽  
S M Voss ◽  
C W Cianci ◽  
A V Tuomari ◽  
...  

Lobucavir (LBV) is a deoxyguanine nucleoside analog with broad-spectrum antiviral activity. LBV was previously shown to inhibit herpes simplex virus (HSV) DNA polymerase after phosphorylation by the HSV thymidine kinase. Here we determined the mechanism of action of LBV against human cytomegalovirus (HCMV). LBV inhibited HCMV DNA synthesis to a degree comparable to that of ganciclovir (GCV), a drug known to target the viral DNA polymerase. The expression of late proteins and RNA, dependent on viral DNA synthesis, was also inhibited by LBV. Immediate-early and early HCMV gene expression was unaffected, suggesting that LBV acts temporally coincident with HCMV DNA synthesis and not through cytotoxicity. In vitro, the triphosphate of LBV was a potent inhibitor of HCMV DNA polymerase with a Ki of 5 nM. LBV was phosphorylated to its triphosphate form intracellularly in both infected and uninfected cells, with phosphorylated metabolite levels two- to threefold higher in infected cells. GCV-resistant HCMV isolates, with deficient GCV phosphorylation due to mutations in the UL97 protein kinase, remained sensitive to LBV. Overall, these results suggest that LBV-triphosphate halts HCMV DNA replication by inhibiting the viral DNA polymerase and that LBV phosphorylation can occur in the absence of viral factors including the UL97 protein kinase. Furthermore, LBV may be effective in the treatment of GCV-resistant HCMV.


2012 ◽  
Vol 86 (18) ◽  
pp. 9995-10005 ◽  
Author(s):  
Stacia L. Phillips ◽  
Daniel Cygnar ◽  
Alexandra Thomas ◽  
Wade A. Bresnahan

Human cytomegalovirus (HCMV) virions are structurally complex, and the mechanisms by which they are assembled are poorly understood, especially with respect to the cytoplasmic phase of assembly, during which the majority of the tegument is acquired and final envelopment occurs. These processes occur at a unique cytoplasmic structure called the assembly complex, which is formed through a reorganization of the cellular secretory apparatus. The HCMV tegument protein UL99 (pp28) is essential for viral replication at the stage of secondary envelopment. We previously demonstrated that UL99 interacts with the essential tegument protein UL94 in infected cells as well as in the absence of other viral proteins. Here we show that UL94 and UL99 alter each other's localization and that UL99 stabilizes UL94 in a binding-dependent manner. We have mapped the interaction between UL94 and UL99 to identify the amino acids of each protein that are required for their interaction. Mutation of these amino acids in the context of the viral genome demonstrates that HCMV is completely defective for replication in the absence of the interaction between UL94 and UL99. Further, we demonstrate that in the absence of their interaction, both UL94 and UL99 exhibit aberrant localization and do not accumulate at the assembly complex during infection. Taken together, our data suggest that the interaction between UL94 and UL99 is essential for the proper localization of each protein to the assembly complex and thus for the production of infectious virus.


2007 ◽  
Vol 81 (18) ◽  
pp. 10123-10136 ◽  
Author(s):  
George Sourvinos ◽  
Nina Tavalai ◽  
Anja Berndt ◽  
Demetrios A. Spandidos ◽  
Thomas Stamminger

ABSTRACT The human cytomegalovirus (HCMV) immediate-early 2 (IE2) transactivator has previously been shown to form intranuclear, dot-like accumulations in association with subnuclear structures known as promyelocytic leukemia protein (PML) nuclear bodies or ND10. We recently observed that IE2 can form dot-like structures even after infection of PML knockdown cells, which lack genuine ND10. To further analyze the determinants of IE2 subnuclear localization, a recombinant HCMV expressing IE2 fused to the enhanced green fluorescent protein was constructed. We infected primary human fibroblasts expressing Sp100 fused to the autofluorescent protein mCherry while performing live-cell imaging experiments. These experiments revealed a very dynamic association of IE2 dots with ND10 structures during the first hours postinfection: juxtaposed structures rapidly fused to precise colocalizations, followed by segregation, and finally, the dispersal of ND10 accumulations. Furthermore, by infecting PML knockdown cells we determined that the number of IE2 accumulations was dependent on the multiplicity of infection. Since time-lapse microscopy in live-infected cells revealed that IE2 foci developed into viral replication compartments, we hypothesized that viral DNA could act as a determinant of IE2 accumulations. Direct evidence that IE2 molecules are associated with viral DNA early after HCMV infection was obtained using fluorescence in situ hybridization. Finally, a DNA-binding-deficient IE2 mutant could no longer be recruited into viral replication centers, suggesting that the association of IE2 with viral DNA is mediated by a direct DNA contact. Thus, we identified viral DNA as an important determinant of IE2 subnuclear localization, which suggests that the formation of a virus-induced nucleoprotein complex and its spatial organization is likely to be critical at the early stages of a lytic infection.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 707
Author(s):  
Jun-Qing Ge ◽  
Zhu-Hong Wang ◽  
Xi Chen ◽  
Hua Chen ◽  
Jian Huang

Bombyx mori nucleopolyhedrovirus (BmNPV) p26 is conserved among all Lepidoptera baculoviruses that have been completely sequenced thus far, and some baculoviruses even have two copies of p26, which suggested that p26 may play an important role in the virus infection cycle. This study aimed to characterize BmNPV p26. We found that BmNPV p26 transcripts were detectable as early as 3 h post-infection (hpi), and the transcript levels rapidly increased starting from 12 hpi. Western blot analysis using an anti-p26 polyclonal antibody demonstrated that the corresponding protein was also detectable from 6 hpi in BmNPV-infected cell lysates. Immunofluorescence analysis demonstrated that p26 was mainly dispersed in the infected cell cytoplasm, whereas the over-expressed fusion protein EGFP-p26 also accumulated in the nucleus. These results indicated that p26 is an early BmNPV gene and has functions both in the cytoplasm and the nucleus. RNAi-based knockdown of p26 could produce infectious virus and normal-appearing virions but decreased budded virus (BV) production in BmNPV-infected cells at 72 hpi. Moreover, the results of further quantitative PCR (Q-PCR) analysis indicated that the gp64 and p74 transcripts levels decreased significantly. These results indicated that BmNPV p26 may be associated with BmNPV replication during the late infection stage.


2004 ◽  
Vol 78 (19) ◽  
pp. 10360-10369 ◽  
Author(s):  
Yiyang Xu ◽  
Sylvia A. Cei ◽  
Alicia Rodriguez Huete ◽  
Gregory S. Pari

ABSTRACT Human cytomegalovirus (HCMV) UL84 is required for oriLyt-dependent DNA replication, and evidence from transient transfection assays suggests that UL84 directly participates in DNA synthesis. In addition, because of its apparent interaction with IE2, UL84 is implicated as a possible regulatory protein. To address the role of UL84 in the context of the viral genome, we generated a recombinant HCMV bacterial artificial chromosome (BAC) construct that did not express the UL84 gene product. This construct, BAC-IN84/Ep, displayed a null phenotype in that it failed to produce infectious virus after transfection into human fibroblast cells, whereas a revertant virus readily produced viral plaques and, subsequently, infectious virus. Real-time quantitative PCR showed that BAC-IN84/Ep was defective for DNA synthesis in that no increase in the accumulation of viral DNA was observed in transfected cells. We were unable to complement BAC-IN84/Ep in trans; however, oriLyt-dependent DNA replication was observed by the cotransfection of UL84 and BAC-IN84/Ep. An analysis of viral mRNA by real-time PCR indicated that, even in the absence of DNA synthesis, all representative kinetic classes of genes were expressed in cells transfected with BAC-IN84/Ep. The detection of UL44 and IE2 by immunofluorescence in BAC-IN84/Ep-transfected cells showed that these proteins failed to partition into replication compartments, indicating that UL84 expression is essential for the formation of these proteins into replication centers within the context of the viral genome. These results show that UL84 provides an essential DNA replication function and influences the subcellular localization of other viral proteins.


Sign in / Sign up

Export Citation Format

Share Document