scholarly journals Human Immunodeficiency Virus Mutations during the First Month of Infection Are Preferentially Found in Known Cytotoxic T-Lymphocyte Epitopes

2005 ◽  
Vol 79 (17) ◽  
pp. 11523-11528 ◽  
Author(s):  
Flavien Bernardin ◽  
Denice Kong ◽  
Lorraine Peddada ◽  
Lee Ann Baxter-Lowe ◽  
Eric Delwart

ABSTRACT The full protein coding region of human immunodeficiency virus (HIV) genomes were sequenced using plasma collected from nine African-Americans prior to seroconversion and 7 to 28 days later. HIV mutations emerged in seven of these subjects at a genomewide rate of 2% per year. The location of nonsynonymous (NS) HIV mutations within these subjects was compared to their potential HLA-A and B types restricted CTL epitopes reported in the Los Alamos National Laboratory HIV immunology database. A statistically significant (P < 0.005) number of the early NS mutations (13.5%) were found within previously reported CTL epitopes. A virus sequencing and reported CTL epitopes database analysis therefore support a model where a significant proportion of very early nonsynonymous HIV mutations are selected by CTL.

1999 ◽  
Vol 73 (7) ◽  
pp. 5466-5472 ◽  
Author(s):  
Michael A. Egan ◽  
Marcelo J. Kuroda ◽  
Gerald Voss ◽  
Jörn E. Schmitz ◽  
William A. Charini ◽  
...  

ABSTRACT To evaluate the impact of the diversity of antigen recognition by T lymphocytes on disease pathogenesis, we must be able to identify and analyze simultaneously cytotoxic T-lymphocyte (CTL) responses specific for multiple viral epitopes. Many of the studies of the role of CD8+ CTLs in AIDS pathogenesis have been done with simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys. These studies have frequently made use of the well-defined SIV Gag CTL epitope p11C,C-M presented to CTL by the HLA-A homologue molecule Mamu-A*01. In the present study we identified and fine mapped two novel Mamu-A*01-restricted CTL epitopes: the SIVmac Pol-derived epitope p68A (STPPLVRLV) and the human immunodeficiency virus type 1 (HIV-1) Env-derived p41A epitope (YAPPISGQI). The frequency of CD8+ CTLs specific for the p11C,C-M, p68A, and p41A epitopes was quantitated in the same animals with a panel of tetrameric Mamu-A*01/peptide/β2m complexes. All SHIV-infected Mamu-A*01+ rhesus monkeys tested had a high frequency of SIVmac Gag-specific CTLs to the p11C,C-M epitope. In contrast, only a fraction of the monkeys tested had detectable CTLs specific for the SIVmac Pol p68A and HIV-1 Env p41A epitopes, and these responses were detected at very low frequencies. Thus, the p11C,C-M-specific CD8+ CTL response is dominant and the p41A- and p68A-specific CD8+ CTL responses are nondominant. These results indicate that CD8+CTL responses to dominant CTL epitopes can be readily quantitated with the tetramer technology; however, CD8+ CTL responses to nondominant epitopes, due to the low frequency of these epitope-specific cells, may be difficult to detect and quantitate by this approach.


2000 ◽  
Vol 74 (12) ◽  
pp. 5679-5690 ◽  
Author(s):  
Philip J. R. Goulder ◽  
C. Brander ◽  
K. Annamalai ◽  
N. Mngqundaniso ◽  
U. Govender ◽  
...  

ABSTRACT Cytotoxic T-lymphocyte (CTL) activity plays a central role in control of viral replication and in determining outcome in cases of human immunodeficiency virus type 1 (HIV-1) infection. Incorporation of important CTL epitope sequences into candidate vaccines is, therefore, vital. Most CTL studies have focused upon small numbers of adult Caucasoid subjects infected with clade-B virus, whereas the global epidemic is most severe in sub-Saharan African populations and predominantly involves clade-C infection in both adults and children. In this study, sensitive enzyme-linked immunospot (elispot) assays have been utilized to identify the dominant Gag-specific CTL epitopes targeted by adults and children infected with clade-B or -C virus. Cohorts evaluated included 44 B-clade-infected Caucasoid American and African American adults and children and 37 C-clade-infected African adults and children from Durban, South Africa. The results show that 3 out of 46 peptides spanning p17Gag and p24Gagsequences tested contain two-thirds of the dominant Gag-specific epitopes, irrespective of the clade, ethnicity, or age group studied. However, there were distinctive differences between the dominant responses made by Caucasoids and Africans. Dominant responses in Caucasoids were more often within p17Gag peptide residues 16 to 30 (38 versus 12%; P < 0.01), while p24Gag peptide residues 41 to 60 contained the dominant Gag epitope more often in the African subjects tested (39 versus 4%;P < 0.005). Within this 20-mer p24Gag, an epitope presented by both B42 and B81 is defined which represents the dominant Gag response in >30% of the total infected population in Durban. This epitope is closely homologous with dominant HIV-2 and simian immunodeficiency virus Gag-specific CTL epitopes. The fine focusing of dominant CTL responses to these few regions of high immunogenicity is of significance to vaccine design.


2002 ◽  
Vol 76 (17) ◽  
pp. 8757-8768 ◽  
Author(s):  
Karina Yusim ◽  
Can Kesmir ◽  
Brian Gaschen ◽  
Marylyn M. Addo ◽  
Marcus Altfeld ◽  
...  

ABSTRACT The human cytotoxic T-lymphocyte (CTL) response to human immunodeficiency virus type 1 (HIV-1) has been intensely studied, and hundreds of CTL epitopes have been experimentally defined, published, and compiled in the HIV Molecular Immunology Database. Maps of CTL epitopes on HIV-1 protein sequences reveal that defined epitopes tend to cluster. Here we integrate the global sequence and immunology databases to systematically explore the relationship between HIV-1 amino acid sequences and CTL epitope distributions. CTL responses to five HIV-1 proteins, Gag p17, Gag p24, reverse transcriptase (RT), Env, and Nef, have been particularly well characterized in the literature to date. Through comparing CTL epitope distributions in these five proteins to global protein sequence alignments, we identified distinct characteristics of HIV amino acid sequences that correlate with CTL epitope localization. First, experimentally defined HIV CTL epitopes are concentrated in relatively conserved regions. Second, the highly variable regions that lack epitopes bear cumulative evidence of past immune escape that may make them relatively refractive to CTLs: a paucity of predicted proteasome processing sites and an enrichment for amino acids that do not serve as C-terminal anchor residues. Finally, CTL epitopes are more highly concentrated in alpha-helical regions of proteins. Based on amino acid sequence characteristics, in a blinded fashion, we predicted regions in HIV regulatory and accessory proteins that would be likely to contain CTL epitopes; these predictions were then validated by comparison to new sets of experimentally defined epitopes in HIV-1 Rev, Tat, Vif, and Vpr.


2003 ◽  
Vol 77 (1) ◽  
pp. 291-300 ◽  
Author(s):  
L. Musey ◽  
Y. Ding ◽  
J. Cao ◽  
J. Lee ◽  
C. Galloway ◽  
...  

ABSTRACT Induction of adaptive immunity to human immunodeficiency virus type 1 (HIV-1) at the mucosal site of transmission is poorly understood but crucial in devising strategies to control and prevent infection. To gain further understanding of HIV-1-specific T-cell mucosal immunity, we established HIV-1-specific CD8+ cytotoxic T-lymphocyte (CTL) cell lines and clones from the blood, cervix, rectum, and semen of 12 HIV-1-infected individuals and compared their specificities, cytolytic function, and T-cell receptor (TCR) clonotypes. Blood and mucosal CD8+ CTL had common HIV-1 epitope specificities and major histocompatibility complex restriction patterns. Moreover, both systemic and mucosal CTL lysed targets with similar efficiency, primarily through the perforin-dependent pathway in in vitro studies. Sequence analysis of the TCRβ VDJ region revealed in some cases identical HIV-1-specific CTL clones in different compartments in the same HIV-1-infected individual. These results clearly establish that a subset of blood and mucosal HIV-1-specific CTL can have a common origin and can traffic between anatomically distinct compartments. Thus, these effectors can provide immune surveillance at the mucosa, where rapid responses are needed to contain HIV-1 infection.


2004 ◽  
Vol 78 (3) ◽  
pp. 1324-1332 ◽  
Author(s):  
Yoshiyuki Yokomaku ◽  
Hideka Miura ◽  
Hiroko Tomiyama ◽  
Ai Kawana-Tachikawa ◽  
Masafumi Takiguchi ◽  
...  

ABSTRACT Investigating escape mechanisms of human immunodeficiency virus type 1 (HIV-1) from cytotoxic T lymphocytes (CTLs) is essential for understanding the pathogenesis of HIV-1 infection and developing effective vaccines. To study the processing and presentation of known CTL epitopes, we prepared Epstein-Barr virus-transformed B cells that endogenously express the gag gene of six field isolates by adopting an env/nef-deletion HIV-1 vector pseudotyped with vesicular stomatitis virus G protein and then tested them for the recognition by Gag epitope-specific CTL lines or clones. We observed that two field variants, SLFNTVAVL and SVYNTVATL, of an A*0201-restricted Gag CTL epitope SLYNTVATL, and three field variants, KYRLKHLVW, QYRLKHIVW, and RYRLKHLVW, of an A24-restricted Gag CTL epitope KYKLKHIVW escaped from being killed by the CTL lines, despite the fact that they were recognized when the synthetic peptides corresponding to these variant sequences were exogenously loaded onto the target cells. Thus, their escape is likely due to the changes that occur during the processing and presentation of epitopes in the infected cells. Mutations responsible for this mode of escape were located within the epitope regions rather than the flanking regions, and such mutations did not influence the virus replication. The results suggest that the impaired antigen processing and presentation often occur in HIV-1 field isolates and thus are one of the major mechanisms that enable HIV-1 to escape from CTL recognition. We emphasize the importance of testing HIV-1 variants in an endogenous expression system.


Author(s):  
Young-Keol Cho ◽  
Jung-eun Kim ◽  
Brian Foley

The objective of this study is to investigate whether the sequence length of HIV-1 increases over time. A longitudinal analysis of full-length coding region sequences (FLs) in an outbreak of HIV-1 infection among patients with hemophilia and local controls identified as infected with the Korean subclade B of HIV-1 (KSB). Genes amplified by overlapping RT-PCR or nested PCR were subjected to direct sequencing. In total, 141 FLs were sequentially determined over 30 years in 62 KSB-infected patients. Non-KSB sequences were retrieved from the Los Alamos National Laboratory HIV Database. Phylogenetic analysis indicated that within KSB, 2 FLs from plasma donors O and P comprised two clusters together with 8 and 12 patients with hemophilia, respectively. Signature pattern analysis for the KSB of HIV-1 revealed signature nucleotide residues at 1.05%, compared with local controls. Additionally, in-depth FLs sequence analysis over 30 years in KSB indicates that the KSB FL significantly increases over time before combined antiretroviral therapy (cART) and decreases on cART. Furthermore, the increase in FLs over time significantly occurred in the subtypes B, C and G, but, there was no increase in the subtypes D, A, and F1. Consequently, subtypes F1 and D had the shortest sequence length. Our analysis was extended to compare HIV-1 with HIV-2 and SIVs. Essentially, the longer the sequence length (SIVsm &gt; HIV-2 &gt; SIVcpz &gt; HIV-1), the longer the survival period. The increase in the length of the HIV-1 sequence over time suggests that it might be an evolutionary direction toward attenuated pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document