scholarly journals BFRF1 of Epstein-Barr Virus Is Essential for Efficient Primary Viral Envelopment and Egress

2005 ◽  
Vol 79 (6) ◽  
pp. 3703-3712 ◽  
Author(s):  
Antonella Farina ◽  
Regina Feederle ◽  
Salvatore Raffa ◽  
Roberta Gonnella ◽  
Roberta Santarelli ◽  
...  

ABSTRACT The molecular mechanisms that underlie maturation and egress of Epstein-Barr virus (EBV) virions are only partially characterized. We have recently shown that the BFRF1 gene, the EBV positional homolog of herpes simplex virus type 1 and pseudorabies virus UL34, is expressed early during EBV lytic replication and that it is found predominantly on the nuclear membrane (A. Farina, R. Santarelli, R. Gonnella, R. Bei, R. Muraro, G. Cardinali, S. Uccini, G. Ragona, L. Frati, A. Faggioni, and A. Angeloni, J. Virol. 74:3235-3244, 2000). These data suggest that the BFRF1 protein might be involved in viral primary envelopment. To precisely determine the function of this protein, we have constructed an EBV mutant devoid of the BFRF1 gene (BFRF1-KO). 293 cells carrying BFRF1-KO showed no differences in comparison with wild-type EBV in terms of DNA lytic replication or expression of late viral proteins upon induction of the lytic cycle. However, binding assays and infection experiments using cell lines or human cord blood lymphocytes showed a clear reduction in the viral mutant titers. Complementation experiments with BFRF1-KO and a BFRF1 expression vector restored viral titers to levels similar to those for the wild-type control, showing that the modifications that we introduced were limited to the BFRF1 gene. Electron microscopic observations showed that the reduction in viral titers was due to sequestration of EBV nucleocapsids in the nuclei of lytically induced cells. This suggests that BFRF1 is involved in transport of the maturing virion across the nuclear membrane. This hypothesis was further supported by the observation that BFRF1 is present in maturing intracellular virions but not in their extracellular counterparts. This implies that BFRF1 is a key protein for EBV maturation.

2005 ◽  
Vol 79 (6) ◽  
pp. 3713-3727 ◽  
Author(s):  
Roberta Gonnella ◽  
Antonella Farina ◽  
Roberta Santarelli ◽  
Salvatore Raffa ◽  
Regina Feederle ◽  
...  

ABSTRACT We have reported in the accompanying paper that the BFRF1 protein of Epstein-Barr virus (EBV) is important for efficient primary viral envelopment and egress (A. Farina, R. Feederle, S. Raffa, R. Gonnella, R. Santarelli, L. Frati, A. Angeloni, M. R. Torrisi, A. Faggioni, and H.-J. Delecluse, J. Virol. 79:3703-3712). Here we describe the characterization of the product of the EBV BFLF2 gene, which belongs to a family of conserved herpesviral genes which include the UL31 genes of herpes simplex virus and of pseudorabies virus and whose products are known to interact with UL34, the positional homolog of BFRF1. BFLF2 is an early transcript and is expressed in a variety of cell lines upon EBV lytic cycle activation. Western blotting of purified virion preparations showed that BFLF2 is a component of intracellular virions but is absent from mature extracellular virions. Coimmunoprecipitation experiments indicated that BFLF2 interacts with BFRF1, which was confirmed by immunofluorescence confocal microscopy showing that the two proteins colocalize on the nuclear membrane not only upon cotransfection in epithelial cells but also during viral replication. In cells carrying an EBV mutant with the BFRF1 gene deleted (293-BFRF1-KO cells) BFLF2 expression was low, and it was restored to wild-type levels upon treatment of the cells with the proteasome inhibitor MG132. Furthermore, recomplementing the 293-BFRF1-KO cells by BFRF1 transfection restored BFLF2 expression to the wild-type level. In addition, when expressed alone BFLF2 was localized diffusely inside the nucleus, whereas in the presence of BFRF1 the two proteins colocalized at the nuclear rim. Finally, 293 epithelial cells transfected with either protein or cotransfected were analyzed by electron microscopy to investigate potential alterations in the morphology of the nuclear membrane. The ultrastructural analysis revealed that (i) BFRF1 caused duplications of the nuclear membrane, similar to those reported to occur during the course of herpesviral replication, and (ii) while BFLF2 alone did not cause any apparent alteration, coexpression of the two proteins dramatically induced profound convolutions of the duplicated nuclear membrane. Both biochemical and morphological analysis showed association of the BFRF1-BFLF2 complex with a component of the nuclear lamina, lamin B. Taken together, these results and those of the accompanying paper (Farina et al., J. Virol. 79:3703-3712) indicate an important role of BFRF1 and BFLF2 in the early steps of EBV maturation at the nuclear membrane.


2005 ◽  
Vol 201 (3) ◽  
pp. 349-360 ◽  
Author(s):  
Victoria A. Pudney ◽  
Alison M. Leese ◽  
Alan B. Rickinson ◽  
Andrew D. Hislop

Antigen immunodominance is an unexplained feature of CD8+ T cell responses to herpesviruses, which are agents whose lytic replication involves the sequential expression of immediate early (IE), early (E), and late (L) proteins. Here, we analyze the primary CD8 response to Epstein-Barr virus (EBV) infection for reactivity to 2 IE proteins, 11 representative E proteins, and 10 representative L proteins, across a range of HLA backgrounds. Responses were consistently skewed toward epitopes in IE and a subset of E proteins, with only occasional responses to novel epitopes in L proteins. CD8+ T cell clones to representative IE, E, and L epitopes were assayed against EBV-transformed lymphoblastoid cell lines (LCLs) containing lytically infected cells. This showed direct recognition of lytically infected cells by all three sets of effectors but at markedly different levels, in the order IE > E ≫ L, indicating that the efficiency of epitope presentation falls dramatically with progress of the lytic cycle. Thus, EBV lytic cycle antigens display a hierarchy of immunodominance that directly reflects the efficiency of their presentation in lytically infected cells; the CD8+ T cell response thereby focuses on targets whose recognition leads to maximal biologic effect.


2000 ◽  
Vol 74 (7) ◽  
pp. 3235-3244 ◽  
Author(s):  
Antonella Farina ◽  
Roberta Santarelli ◽  
Roberta Gonnella ◽  
Roberto Bei ◽  
Raffaella Muraro ◽  
...  

ABSTRACT Computer analysis of the Epstein-Barr virus (EBV) genome indicates there are ∼100 open reading frames (ORFs). Thus far about 30 EBV genes divided into the categories latent and lytic have been identified. The BamHI F region of EBV is abundantly transcribed during lytic replication. This region is highly conserved among herpesviruses, thus suggesting that some common function could be retained in the ORFs encompassed within this viral fragment. To identify putative novel proteins and possible new markers for viral replication, we focused our attention on the first rightward ORF in theBamHI F region (BFRF1). Histidine and glutathione S-transferase-tagged BFRF1 fusion proteins were synthesized to produce a mouse monoclonal antibody (MAb). Analysis of human sera revealed a high seroprevalence of antibodies to BFRF1 in patients affected by nasopharyngeal carcinoma or Burkitt's lymphoma, whereas no humoral response to BFRF1 could be detected among healthy donors. An anti-BFRF1 MAb recognizes a doublet migrating at 37 to 38 kDa in cells extracts from EBV-infected cell lines following lytic cycle activation and in an EBV-negative cell line (DG75) transfected with a plasmid expressing the BFRF1 gene. Northern blot analysis allowed the detection of a major transcript of 3.7 kb highly expressed in EBV-positive lytic cycle-induced cell lines. Treatment with inhibitors of viral DNA polymerase, such as phosphonoacetic acid and acyclovir, reduced but did not abolish the transcription ofBFRF1, thus indicating that BFRF1 can be classified as an early gene. Cell fractionation experiments, as well as immunolocalization by immunofluorescence microscopy, immunohistochemistry, and immunoelectron microscopy, showed that BFRF1 is localized on the plasma membrane and nuclear compartments of the cells and is a structural component of the viral particle. Identification of BFRF1 provides a new marker with which to monitor EBV infection and might help us better understand the biology of the virus.


2006 ◽  
Vol 87 (5) ◽  
pp. 1133-1137 ◽  
Author(s):  
Wolfgang Amon ◽  
Robert E. White ◽  
Paul J. Farrell

Epstein–Barr virus (EBV) establishes a latent persistence from which it can be reactivated to undergo lytic replication. Late lytic-cycle gene expression is linked to lytic DNA replication, as it is sensitive to the same inhibitors that block lytic replication, and it has recently been shown that the viral origin of lytic replication (ori lyt) is required in cis for late-gene expression. During the lytic cycle, the viral genome forms replication compartments, which are usually adjacent to promyelocytic leukaemia protein (PML) nuclear bodies. A tetracycline repressor DNA-binding domain–enhanced green fluorescent protein fusion was used to visualize replicating plasmids carrying a tetracycline operator sequence array. ori lyt mediated the production of plasmid replication compartments that were associated with PML nuclear bodies. Plasmids carrying ori lyt and EBV itself were visualized in the same cells and replicated in similar regions of the nucleus, further supporting the validity of the plasmids for studying late-gene regulation.


2020 ◽  
Author(s):  
Meili Li ◽  
Yingjie Guo ◽  
Yangxi Deng ◽  
Yiwen Li ◽  
Xiaowen Ou ◽  
...  

Abstract Background: Epstein-Barr virus (EBV), the pathogen of several human malignancies, encodes many proteins that require to be transported into the nucleus for viral DNA reproduction and nucleocapsids assembly in the lytic replication cycle. A nuclear membrane phosphoprotein encoded by EBV BLLF2, is believed to associate with viral DNA packaging and primary egress across the nuclear membrane. Results: Here, fluorescence microscope, mutation analysis, interspecies heterokaryon assays, co-immunoprecipitation assays and western blot were performed to explore the nuclear import mechanism of BLLF2. As results, BLLF2 was shown to be a nucleocytoplasmic shuttling protein, which was mediated neither by chromosomal region maintenance 1 (CRM1)- nor transporter associated with antigen processing (TAP)-dependent pathway. Yet, two functional nuclear localization signals (NLSs) of BLLF2, NLS1 (16KRQALETVPHPQNRGR31) and NLS2 (48PPVAKRRR58), were identified, whereas the predicted NES was nonfunctional. Finally, BLLF2 was proved to transport into the nucleus via Ran-dependent and importin β1-dependent pathway. Conclusions: This mechanism may contribute to a more extensive insight of the assembly and synthesis of EB virions in the nucleus, thus affording a new direction for the treatment of viruses.


2010 ◽  
Vol 84 (14) ◽  
pp. 7073-7082 ◽  
Author(s):  
Andrew J. Rennekamp ◽  
Pu Wang ◽  
Paul M. Lieberman

ABSTRACT The Epstein-Barr virus immediate-early protein (Zta) plays an essential role in viral lytic activation and pathogenesis. Zta is a basic zipper (b-Zip) domain-containing protein that binds multiple sites in the viral origin of lytic replication (OriLyt) and is required for lytic-cycle DNA replication. We present evidence that Zta binds to a sequence-specific, imperfect DNA hairpin formed by an inverted repeat within the upstream essential element (UEE) of OriLyt. Mutations in the OriLyt sequence that are predicted to disrupt hairpin formation also disrupt Zta binding in vitro. Restoration of the hairpin rescues the defect. We also show that OriLyt DNA isolated from replicating cells contains a nuclease-sensitive region that overlaps with the inverted-repeat region of the UEE. Furthermore, point mutations in Zta that disrupt specific recognition of the UEE hairpin are defective for activation of lytic replication. These data suggest that Zta acts by inducing and/or stabilizing a DNA hairpin structure during productive infection. The DNA hairpin at OriLyt with which Zta interacts resembles DNA structures formed at other herpesvirus origins and may therefore represent a common secondary structure used by all herpesvirus family members during the initiation of DNA replication.


2006 ◽  
Vol 80 (10) ◽  
pp. 5078-5081 ◽  
Author(s):  
Bernhard Neuhierl ◽  
Henri-Jacques Delecluse

ABSTRACT The Epstein-Barr virus (EBV) BMRF1 protein is a DNA polymerase processivity factor. We have deleted the BMRF1 open reading frame from the EBV genome and assessed the ΔBMRF1 EBV phenotype. ΔBMRF1 viruses were replication deficient, but the wild-type phenotype could be restored by BMRF1 trans-complementation. The replication-deficient phenotype included impaired lytic DNA replication and late protein expression. ΔBMRF1 and wild-type viruses were undistinguishable in terms of their ability to transform primary B cells. Our results provide genetic evidence that BMRF1 is essential for lytic replication of the EBV genome.


2006 ◽  
Vol 80 (19) ◽  
pp. 9435-9443 ◽  
Author(s):  
R. Feederle ◽  
B. Neuhierl ◽  
G. Baldwin ◽  
H. Bannert ◽  
B. Hub ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a tumor virus with marked B lymphotropism. After crossing the B-cell membrane, the virus enters cytoplasmic vesicles, where decapsidation takes place to allow transfer of the viral DNA to the cell nucleus. BNRF1 has been characterized as the EBV major tegument protein, but its precise function is unknown. We have constructed a viral mutant that lacks the BNRF1 gene and report here its in vitro phenotype. A recombinant virus devoid of BNRF1 (ΔBNRF1) showed efficient DNA replication and production of mature viral particles. B cells infected with the ΔBNRF1 mutant presented viral lytic antigens as efficiently as B cells infected with wild-type or BNRF1 trans-complemented ΔBNRF1 viruses. Antigen presentation in B cells infected with either wild-type (EBV-wt) or ΔBNRF1 virus was blocked by leupeptin addition, showing that both viruses reach the endosome/lysosome compartment. These data were confirmed by direct observation of the mutant virus in endosomes of infected B cells by electron microscopy. However, we observed a 20-fold reduction in the number of B cells expressing the nuclear protein EBNA2 after infection with a ΔBNRF1 virus compared to wild-type infection. Likewise, ΔBNRF1 viruses transformed primary B cells much less efficiently than EBV-wt or BNRF1 trans-complemented viruses. We conclude from these findings that BNRF1 plays an important role in viral transport from the endosomes to the nucleus.


2004 ◽  
Vol 85 (6) ◽  
pp. 1371-1379 ◽  
Author(s):  
Yao Chang ◽  
Shih-Shin Chang ◽  
Heng-Huan Lee ◽  
Shin-Lian Doong ◽  
Kenzo Takada ◽  
...  

Epstein–Barr virus (EBV) reactivation into the lytic cycle plays certain roles in the development of EBV-associated diseases, so an effective strategy to block the viral lytic cycle may be of value to reduce the disease risk or to improve the clinical outcome. This study examined whether the EBV lytic cycle could be inhibited using RNA interference (RNAi) directed against the essential viral gene Zta. In cases of EBV reactivation triggered by chemicals or by exogenous Rta, Zta-targeted RNAi prevented the induction of Zta and its downstream genes and further blocked the lytic replication of viral genomes. This antiviral effect of RNAi was not likely to be mediated by activation of the interferon pathway, as phosphorylation of STAT1 was not induced. In addition, novel EBV-infected epithelial cells showing constitutive activation of the lytic cycle were cloned; such established lytic infection was also suppressed by Zta-targeted RNAi. These results indicate that RNAi can be used to inhibit the EBV lytic cycle effectively in vitro and could also be of potential use to develop anti-EBV treatments.


2000 ◽  
Vol 74 (21) ◽  
pp. 10142-10152 ◽  
Author(s):  
Annette Janz ◽  
Muhsin Oezel ◽  
Christian Kurzeder ◽  
Josef Mautner ◽  
Dagmar Pich ◽  
...  

ABSTRACT The binding of the viral major glycoprotein BLLF1 (gp350/220) to the CD21 cellular receptor is thought to play an essential role during infection of B lymphocytes by the Epstein-Barr virus (EBV). However, since CD21-negative cells have been reported to be infectible with EBV, additional interactions between viral and cellular molecules seem to be probable. Based on a recombinant genomic EBV plasmid, we deleted the gene that encodes the viral glycoprotein BLLF1. We tested the ability of the viral mutant to infect different lymphoid and epithelial cell lines. Primary human B cells, lymphoid cell lines, and nearly all of the epithelial cell lines that are susceptible to wild-type EBV infection could also be successfully infected with the viral mutant in vitro, although the efficiency of infection with BLLF1-negative virus was clearly lower than the one observed with wild-type EBV. Our studies show that the interaction between BLLF1 and CD21 is not absolutely required for the infection of lymphocytes and epithelial cells, indicating that viral molecules other than BLLF1 can mediate the binding of EBV to its target cells. In this context, our results further suggest the hypothesis that additional cellular molecules, apart from CD21, allow virus entry into these cells.


Sign in / Sign up

Export Citation Format

Share Document