scholarly journals The BFRF1 Gene of Epstein-Barr Virus Encodes a Novel Protein

2000 ◽  
Vol 74 (7) ◽  
pp. 3235-3244 ◽  
Author(s):  
Antonella Farina ◽  
Roberta Santarelli ◽  
Roberta Gonnella ◽  
Roberto Bei ◽  
Raffaella Muraro ◽  
...  

ABSTRACT Computer analysis of the Epstein-Barr virus (EBV) genome indicates there are ∼100 open reading frames (ORFs). Thus far about 30 EBV genes divided into the categories latent and lytic have been identified. The BamHI F region of EBV is abundantly transcribed during lytic replication. This region is highly conserved among herpesviruses, thus suggesting that some common function could be retained in the ORFs encompassed within this viral fragment. To identify putative novel proteins and possible new markers for viral replication, we focused our attention on the first rightward ORF in theBamHI F region (BFRF1). Histidine and glutathione S-transferase-tagged BFRF1 fusion proteins were synthesized to produce a mouse monoclonal antibody (MAb). Analysis of human sera revealed a high seroprevalence of antibodies to BFRF1 in patients affected by nasopharyngeal carcinoma or Burkitt's lymphoma, whereas no humoral response to BFRF1 could be detected among healthy donors. An anti-BFRF1 MAb recognizes a doublet migrating at 37 to 38 kDa in cells extracts from EBV-infected cell lines following lytic cycle activation and in an EBV-negative cell line (DG75) transfected with a plasmid expressing the BFRF1 gene. Northern blot analysis allowed the detection of a major transcript of 3.7 kb highly expressed in EBV-positive lytic cycle-induced cell lines. Treatment with inhibitors of viral DNA polymerase, such as phosphonoacetic acid and acyclovir, reduced but did not abolish the transcription ofBFRF1, thus indicating that BFRF1 can be classified as an early gene. Cell fractionation experiments, as well as immunolocalization by immunofluorescence microscopy, immunohistochemistry, and immunoelectron microscopy, showed that BFRF1 is localized on the plasma membrane and nuclear compartments of the cells and is a structural component of the viral particle. Identification of BFRF1 provides a new marker with which to monitor EBV infection and might help us better understand the biology of the virus.

2003 ◽  
Vol 77 (7) ◽  
pp. 4415-4422 ◽  
Author(s):  
Kimberly D. Erickson ◽  
Christoph Berger ◽  
William F. Coffin ◽  
Edwin Schiff ◽  
Dennis M. Walling ◽  
...  

ABSTRACT The lytic cycle-associated lytic latent membrane protein-1 (lyLMP-1) of Epstein-Barr virus (EBV) is an amino-terminally truncated form of the oncogenic LMP-1. Although lyLMP-1 shares none of LMP-1's transforming and signal transducing activities, we recently reported that lyLMP-1 can negatively regulate LMP-1-stimulated NF-κB activation. The lyLMP-1 protein encoded by the B95-8 strain of EBV initiates from methionine 129 (Met129) of the LMP-1 open reading frame (ORF). The recent report that Met129 in the B95-8 LMP-1 ORF is not conserved in the Akata strain of EBV prompted us to screen a panel of EBV-positive cell lines for conservation of Met129 and lyLMP-1 expression. We found that 15 out of 16 tumor-associated virus isolates sequenced encoded an ATT or ACC codon in place of ATG in the LMP-1 ORF at position 129, and tumor cell lines harboring isolates lacking an ATG at codon 129 did not express the lyLMP-1 protein. In contrast, we found that EBV DNA from 22 out of 37 healthy seropositive donors retained the Met129 codon. Finally, the lyLMP-1 initiator occurs variably within distinct EBV strains and its presence cannot be predicted by EBV strain identity. Thus, Met129 is not peculiar to the B95-8 strain of EBV, but rather can be found in the background of several evolutionarily distinct EBV strains. Its absence from EBV isolates from tumors raises the possibility of selective pressure on Met129 in EBV-dependent tumors.


2005 ◽  
Vol 201 (3) ◽  
pp. 349-360 ◽  
Author(s):  
Victoria A. Pudney ◽  
Alison M. Leese ◽  
Alan B. Rickinson ◽  
Andrew D. Hislop

Antigen immunodominance is an unexplained feature of CD8+ T cell responses to herpesviruses, which are agents whose lytic replication involves the sequential expression of immediate early (IE), early (E), and late (L) proteins. Here, we analyze the primary CD8 response to Epstein-Barr virus (EBV) infection for reactivity to 2 IE proteins, 11 representative E proteins, and 10 representative L proteins, across a range of HLA backgrounds. Responses were consistently skewed toward epitopes in IE and a subset of E proteins, with only occasional responses to novel epitopes in L proteins. CD8+ T cell clones to representative IE, E, and L epitopes were assayed against EBV-transformed lymphoblastoid cell lines (LCLs) containing lytically infected cells. This showed direct recognition of lytically infected cells by all three sets of effectors but at markedly different levels, in the order IE > E ≫ L, indicating that the efficiency of epitope presentation falls dramatically with progress of the lytic cycle. Thus, EBV lytic cycle antigens display a hierarchy of immunodominance that directly reflects the efficiency of their presentation in lytically infected cells; the CD8+ T cell response thereby focuses on targets whose recognition leads to maximal biologic effect.


2010 ◽  
Vol 84 (12) ◽  
pp. 6139-6152 ◽  
Author(s):  
Amy L. Ellis ◽  
Zhenxun Wang ◽  
Xianming Yu ◽  
Janet E. Mertz

ABSTRACT We previously reported that the cellular protein ZEB1 can repress expression of the Epstein-Barr virus (EBV) BZLF1 gene in transient transfection assays by directly binding its promoter, Zp. We also reported that EBV containing a 2-bp substitution mutation in the ZEB-binding ZV element of Zp spontaneously reactivated out of latency into lytic replication at a higher frequency than did wild-type EBV. Here, using small interfering RNA (siRNA) and short hairpin RNA (shRNA) technologies, we definitively show that ZEB1 is, indeed, a key player in maintaining EBV latency in some epithelial and B-lymphocytic cell lines. However, in other EBV-positive epithelial and B-cell lines, another zinc finger E-box-binding protein, ZEB2/SIP1, is the key player. Both ZEB1 and ZEB2 can bind Zp via the ZV element. In EBV-positive cells containing only ZEB1, knockdown of ZEB1 led to viral reactivation out of latency, with synthesis of EBV immediate-early and early lytic gene products. However, in EBV-positive cells containing both ZEBs, ZEB2, not ZEB1, was the primary ZEB family member bound to Zp. Knockdown of ZEB2, but not ZEB1, led to EBV lytic reactivation. Thus, we conclude that either ZEB1 or ZEB2 can play a central role in the maintenance of EBV latency, doing so in a cell-type-dependent manner.


2006 ◽  
Vol 87 (5) ◽  
pp. 1133-1137 ◽  
Author(s):  
Wolfgang Amon ◽  
Robert E. White ◽  
Paul J. Farrell

Epstein–Barr virus (EBV) establishes a latent persistence from which it can be reactivated to undergo lytic replication. Late lytic-cycle gene expression is linked to lytic DNA replication, as it is sensitive to the same inhibitors that block lytic replication, and it has recently been shown that the viral origin of lytic replication (ori lyt) is required in cis for late-gene expression. During the lytic cycle, the viral genome forms replication compartments, which are usually adjacent to promyelocytic leukaemia protein (PML) nuclear bodies. A tetracycline repressor DNA-binding domain–enhanced green fluorescent protein fusion was used to visualize replicating plasmids carrying a tetracycline operator sequence array. ori lyt mediated the production of plasmid replication compartments that were associated with PML nuclear bodies. Plasmids carrying ori lyt and EBV itself were visualized in the same cells and replicated in similar regions of the nucleus, further supporting the validity of the plasmids for studying late-gene regulation.


2004 ◽  
Vol 78 (16) ◽  
pp. 8543-8551 ◽  
Author(s):  
Sandra Lavens ◽  
Emmanuel A. Faust ◽  
Fang Lu ◽  
Michele Jacob ◽  
Messele Leta ◽  
...  

ABSTRACT Epstein-Barr Virus (EBV) is a potentially oncogenic herpesvirus that infects >90% of the world's population. EBV exists predominantly as a latent infection in B lymphocytes, with periodic lytic-cycle reactivation essential for cellular and host transmission. Viral reactivation can be stimulated by ligand-induced activation of B-cell-receptor (BCR)-coupled signaling pathways. The critical first step in the transition from latency to the lytic cycle is the expression of the viral immediate-early gene BZLF1 through the transcription activation of its promoter, Zp. However, the BCR-coupled signal transduction cascade(s) leading to the induction of Zp and the expression of the BZLF1 gene product, Zta, is currently unclear. A major obstacle to delineating the relevant signal transduction events has been the lack of a model of EBV infection that is amenable to genetic manipulation. The use of the avian B-cell line DT40 has proven to be a powerful tool for delineating BCR-mediated signal transduction pathways that appear to be highly conserved between avian and mammalian systems. We demonstrate that the DT40 cell line is a robust and genetically tractable system for the study of BCR-mediated signaling pathways leading to transcriptional activation of BZLF1. Using this system, we demonstrate that activation of Zp requires the BCR-coupled protein tyrosine kinases Syk and Btk and that it is positively regulated by Lyn. Thus, the use of DT40 cells has allowed us to delineate the early signaling components required for BCR-dependent reactivation of latent EBV, and this system is likely to prove useful for further dissection of the downstream signaling cascades involved.


2020 ◽  
Vol 295 (21) ◽  
pp. 7431-7441 ◽  
Author(s):  
Qian Wang ◽  
Nannan Zhu ◽  
Jiayuan Hu ◽  
Yan Wang ◽  
Jun Xu ◽  
...  

Lytic replication of Epstein-Barr virus (EBV) is not only essential for its cell–to–cell spread and host–to–host transmission, but it also contributes to EBV-induced oncogenesis. Thus, blocking EBV lytic replication could be a strategy for managing EBV-associated diseases. Previously, we identified a series of natural lignans isolated from the roots of Saururus chinensis (Asian lizard's tail) that efficiently block EBV lytic replication and virion production with low cytotoxicity. In this study, we attempted to elucidate the molecular mechanism by which these lignans inhibit EBV lytic replication. We found that a representative compound, CSC27 (manassantin B), inhibits EBV lytic replication by suppressing the expression of EBV immediate-early gene BZLF1 via disruption of AP-1 signal transduction. Further analysis revealed that manassantin B specifically blocks the mammalian target of rapamycin complex 2 (mTORC2)-mediated phosphorylation of AKT Ser/Thr protein kinase at Ser-473 and protein kinase Cα (PKCα) at Ser-657. Using phosphoinositide 3-kinase–AKT-specific inhibitors for kinase mapping and shRNA-mediated gene silencing, we validated that manassantin B abrogates EBV lytic replication by inhibiting mTORC2 activity and thereby blocking the mTORC2–PKC/AKT-signaling pathway. These results suggest that mTORC2 may have utility as an antiviral drug target against EBV infections and also reveal that manassantin B has potential therapeutic value for managing cancers that depend on mTORC2 signaling for survival.


2010 ◽  
Vol 84 (14) ◽  
pp. 7073-7082 ◽  
Author(s):  
Andrew J. Rennekamp ◽  
Pu Wang ◽  
Paul M. Lieberman

ABSTRACT The Epstein-Barr virus immediate-early protein (Zta) plays an essential role in viral lytic activation and pathogenesis. Zta is a basic zipper (b-Zip) domain-containing protein that binds multiple sites in the viral origin of lytic replication (OriLyt) and is required for lytic-cycle DNA replication. We present evidence that Zta binds to a sequence-specific, imperfect DNA hairpin formed by an inverted repeat within the upstream essential element (UEE) of OriLyt. Mutations in the OriLyt sequence that are predicted to disrupt hairpin formation also disrupt Zta binding in vitro. Restoration of the hairpin rescues the defect. We also show that OriLyt DNA isolated from replicating cells contains a nuclease-sensitive region that overlaps with the inverted-repeat region of the UEE. Furthermore, point mutations in Zta that disrupt specific recognition of the UEE hairpin are defective for activation of lytic replication. These data suggest that Zta acts by inducing and/or stabilizing a DNA hairpin structure during productive infection. The DNA hairpin at OriLyt with which Zta interacts resembles DNA structures formed at other herpesvirus origins and may therefore represent a common secondary structure used by all herpesvirus family members during the initiation of DNA replication.


2004 ◽  
Vol 85 (6) ◽  
pp. 1371-1379 ◽  
Author(s):  
Yao Chang ◽  
Shih-Shin Chang ◽  
Heng-Huan Lee ◽  
Shin-Lian Doong ◽  
Kenzo Takada ◽  
...  

Epstein–Barr virus (EBV) reactivation into the lytic cycle plays certain roles in the development of EBV-associated diseases, so an effective strategy to block the viral lytic cycle may be of value to reduce the disease risk or to improve the clinical outcome. This study examined whether the EBV lytic cycle could be inhibited using RNA interference (RNAi) directed against the essential viral gene Zta. In cases of EBV reactivation triggered by chemicals or by exogenous Rta, Zta-targeted RNAi prevented the induction of Zta and its downstream genes and further blocked the lytic replication of viral genomes. This antiviral effect of RNAi was not likely to be mediated by activation of the interferon pathway, as phosphorylation of STAT1 was not induced. In addition, novel EBV-infected epithelial cells showing constitutive activation of the lytic cycle were cloned; such established lytic infection was also suppressed by Zta-targeted RNAi. These results indicate that RNAi can be used to inhibit the EBV lytic cycle effectively in vitro and could also be of potential use to develop anti-EBV treatments.


Sign in / Sign up

Export Citation Format

Share Document