scholarly journals Lipid-Specific Labeling of Enveloped Viruses with Quantum Dots for Single-Virus Tracking

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Li-Juan Zhang ◽  
Shaobo Wang ◽  
Li Xia ◽  
Cheng Lv ◽  
Hong-Wu Tang ◽  
...  

ABSTRACT Quantum dots (QDs) possess optical properties of superbright fluorescence, excellent photostability, narrow emission spectra, and optional colors. Labeled with QDs, single molecules/viruses can be rapidly and continuously imaged for a long time, providing more detailed information than when labeled with other fluorophores. While they are widely used to label proteins in single-molecule-tracking studies, QDs have rarely been used to study virus infection, mainly due to a lack of accepted labeling strategies. Here, we report a general method to mildly and readily label enveloped viruses with QDs. Lipid-biotin conjugates were used to recognize and mark viral lipid membranes, and streptavidin-QD conjugates were used to light them up. Such a method allowed enveloped viruses to be labeled in 2 h with specificity and efficiency up to 99% and 98%, respectively. The intact morphology and the native infectivity of viruses were preserved. With the aid of this QD labeling method, we lit wild-type and mutant Japanese encephalitis viruses up, tracked their infection in living Vero cells, and found that H144A and Q258A substitutions in the envelope protein did not affect the virus intracellular trafficking. The lipid-specific QD labeling method described in this study provides a handy and practical tool to readily “see” the viruses and follow their infection, facilitating the widespread use of single-virus tracking and the uncovering of complex infection mechanisms. IMPORTANCE Virus infection in host cells is a complex process comprising a large number of dynamic molecular events. Single-virus tracking is a versatile technique to study these events. To perform this technique, viruses must be fluorescently labeled to be visible to fluorescence microscopes. The quantum dot is a kind of fluorescent tag that has many unique optical properties. It has been widely used to label proteins in single-molecule-tracking studies but rarely used to study virus infection, mainly due to the lack of an accepted labeling method. In this study, we developed a lipid-specific method to readily, mildly, specifically, and efficiently label enveloped viruses with quantum dots by recognizing viral envelope lipids with lipid-biotin conjugates and recognizing these lipid-biotin conjugates with streptavidin-quantum dot conjugates. It is not only applicable to normal viruses, but also competent to label the key protein-mutated viruses and the inactivated highly virulent viruses, providing a powerful tool for single-virus tracking.

2020 ◽  
Author(s):  
Li-Juan Zhang ◽  
Shaobo Wang ◽  
Li Xia ◽  
Cheng Lv ◽  
Hong-Wu Tang ◽  
...  

AbstractQuantum dots (QDs) possess optical properties of superbright fluorescence, excellent photostability, narrow emission spectra, and optional colors. Labeled with QDs, single molecules/viruses can be rapidly and continuously imaged for a long time, providing more detailed information than labeled with other fluorophores. While they are widely used to label proteins in single-molecule tracking studies, QDs have rarely been used to study virus infection, mainly due to lack of accepted labeling strategies. Here, we report a general method to mildly and readily label enveloped viruses with QDs. Lipid-biotin conjugates were used to recognize and mark viral lipid membranes, and streptavidin (SA)-QD conjugates were used to light them up. Such a method allowed enveloped viruses to be labeled in 2 hours with specificity and efficiency up to 99% and 98%. The intact morphology and the native infectivity of viruses could be furthest preserved. With the aid of this QD labeling method, we lit wild-type (WT) and mutant Japanese encephalitis virus (JEV) up, tracked their infection in living Vero cells, and found that H144A and Q258A substitutions in the envelope (E) protein didn’t affect the virus intracellular trafficking. The lipid-specific QD labeling method described in this study provides a handy and practical tool to readily “see” the viruses and follow their infection, facilitating the widespread use of single-virus tracking and the uncovering of complex infection mechanisms.Author summaryVirus infection in host cells is a complex process comprising a large number of dynamic molecular events. Single-virus tracking is a versatile technique to study these events. To perform this technique, viruses must be fluorescently labeled to be visible to fluorescence microscopes. Quantum dot is a kind of fluorescent tags that has many unique optical properties. It has been widely used to label proteins in single-molecule tracking studies, but rarely used to study virus infection, mainly due to lack of accepted labeling method. In this study, we developed a lipid-specific method to readily, mildly, specifically, and efficiently label enveloped viruses with quantum dots by recognizing viral envelope lipids with lipid-biotin conjugates and recognizing these lipid-biotin conjugates with streptavidin-quantum dot conjugates. Such a method is superior to the commonly used DiD/DiO labeling and the other QD labeling methods. It is not only applicable to normal viruses, but also competent to label the key protein-mutated viruses and the inactivated high virulent viruses, providing a powerful tool for single-virus tracking.


2016 ◽  
Vol 45 (5) ◽  
pp. 1211-1224 ◽  
Author(s):  
Shu-Lin Liu ◽  
Zhi-Gang Wang ◽  
Zhi-Ling Zhang ◽  
Dai-Wen Pang

We describe the implementation of quantum dot-based single-virus tracking and show how to use this technique to acquire meaningful information.


2018 ◽  
Vol 122 (30) ◽  
pp. 17406-17412 ◽  
Author(s):  
Janet Y. Sheung ◽  
Pinghua Ge ◽  
Sung Jun Lim ◽  
Sang Hak Lee ◽  
Andrew M. Smith ◽  
...  

2016 ◽  
Vol 16 (4) ◽  
pp. 3816-3820
Author(s):  
Lu Shuhua ◽  
Wang Aiji ◽  
Chen Tingfang ◽  
Wang Yinshu

Doped and undoped ZnS colloidal nanocrystals have drawn much attention due to their versatile applications in the fields of optoelectronics and biotechnology. In this paper, Cu doped ZnS quantum dots were synthesized via the simple thermolysis of ethylxanthate salts. The lattice and optical properties of the nanocrystals were then studied in detail. The quantum dot lattice contracted linearly between Cu concentrations of 0.2–2%, while it continued to contract more gradually as Cu concentrations were further increased from 4 to 6%, due in part to the Cu ions located on the surface of the ZnS lattice. Cu incorporation induces a long tail in absorption at long wavelengths. The PL spectrum shows a red shift at first, and then a blue shift with increases in Cu concentration. Cu doped at low concentrations (0.2–1%) enhanced the emission, while high Cu concentrations (2–6%) quenched emissions.


2004 ◽  
Vol 831 ◽  
Author(s):  
Sławomir P. Łepkowski ◽  
Grzegorz Jurczak ◽  
Paweł Dłużewski ◽  
Tadeusz Suski

ABSTRACTWe theoretically investigate elastic, piezoelectric and optical properties of wurtzite GaN/AlN quantum dots, having hexagonal pyramid-shape, stacked in a multilayer. We show that the strain existing in quantum dots and barriers depends significantly on the distance between the dots i.e. on the width of AlN barriers. For typical QDs, having the base diameter of 19.5nm, the drop of the electrostatic potential in the quantum dot region slightly decreases with decreasing of the barrier width. This decrease is however much smaller for QDs than for superlattice of GaN/AlGaN quantum wells, with thickness similar to the height of QDs. Consequently, the band-to-band transition energies in the vertically correlated GaN/AlN QDs show unexpected, rather weak dependence on the width of AlN barriers. Increasing the QD base diameter leads to stronger decreasing dependence of the band-to-band transition energies vs. the width of AlN barriers, similar to that observed for superlattieces of QWs.


2010 ◽  
Vol 87 (5-8) ◽  
pp. 1304-1307 ◽  
Author(s):  
O. Tangmettajittakul ◽  
S. Thainoi ◽  
P. Changmoang ◽  
S. Kanjanachuchai ◽  
S. Rattanathammaphan ◽  
...  

2005 ◽  
Vol 45 (supplement) ◽  
pp. S119
Author(s):  
H. Tada ◽  
H. Higuchi ◽  
T. Watanabe ◽  
N. Ohuchi

2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Manu Mitra

Abstract: Quantum dots have interesting optical properties. They absorb incoming light of one color and emit out light of a completely different color. This research paper discloses eigen states of a simple and multilayer quantum dot in various structures for cuboid, cylinder, dome, cone, and pyramid, and its three-dimensional wave function, energy states, light and dark transitions (X-polarized), light and dark transitions (Y-polarized), light and dark transitions (Zpolarized), light and dark transitions (phi = 0 and theta= 45), absorption (phi = 0 and theta = 45), absorption sweep of angle theta, and integrated absorption are plotted and the observations of high peak values are noted and documented.


Sign in / Sign up

Export Citation Format

Share Document