scholarly journals Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

mBio ◽  
2012 ◽  
Vol 3 (6) ◽  
Author(s):  
Ariel D. Weinberger ◽  
Yuri I. Wolf ◽  
Alexander E. Lobkovsky ◽  
Michael S. Gilmore ◽  
Eugene V. Koonin

ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological sensors (Lamarckian evolution) are predicted. IMPORTANCE A remarkable recent discovery in microbiology is that bacteria and archaea possess systems conferring immunological memory and adaptive immunity. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (CRISPR-Cas) are genomic sensors that allow prokaryotes to acquire DNA fragments from invading viruses and plasmids. Providing immunological memory, these stored fragments destroy matching DNA in future viral and plasmid invasions. CRISPR-Cas systems also provide adaptive immunity, keeping up with mutating viruses and plasmids by continually acquiring new DNA fragments. Surprisingly, less than 50% of mesophilic bacteria, in contrast to almost 90% of thermophilic bacteria and Archaea, maintain CRISPR-Cas immunity. Using mathematical modeling, we probe this dichotomy, showing how increased viral mutation rates can explain the reduced prevalence of CRISPR-Cas systems in mesophiles. Rapidly mutating viruses outrun CRISPR-Cas immune systems, likely decreasing their prevalence in bacterial populations. Thus, viral adaptability may select against, rather than for, immune adaptability in prokaryotes.

2015 ◽  
Vol 112 (11) ◽  
pp. 3229-3234 ◽  
Author(s):  
Chunte Sam Peng ◽  
Bogdan I. Fedeles ◽  
Vipender Singh ◽  
Deyu Li ◽  
Tiffany Amariuta ◽  
...  

Antiviral drugs designed to accelerate viral mutation rates can drive a viral population to extinction in a process called lethal mutagenesis. One such molecule is 5,6-dihydro-5-aza-2′-deoxycytidine (KP1212), a selective mutagen that induces A-to-G and G-to-A mutations in the genome of replicating HIV. The mutagenic property of KP1212 was hypothesized to originate from its amino–imino tautomerism, which would explain its ability to base pair with either G or A. To test the multiple tautomer hypothesis, we used 2D IR spectroscopy, which offers subpicosecond time resolution and structural sensitivity to distinguish among rapidly interconverting tautomers. We identified several KP1212 tautomers and found that >60% of neutral KP1212 is present in the enol–imino form. The abundant proportion of this traditionally rare tautomer offers a compelling structure-based mechanism for pairing with adenine. Additionally, the pKa of KP1212 was measured to be 7.0, meaning a substantial population of KP1212 is protonated at physiological pH. Furthermore, the mutagenicity of KP1212 was found to increase dramatically at pH <7, suggesting a significant biological role for the protonated KP1212 molecules. Overall, our data reveal that the bimodal mutagenic properties of KP1212 result from its unique shape shifting ability that utilizes both tautomerization and protonation.


2010 ◽  
Vol 84 (19) ◽  
pp. 9733-9748 ◽  
Author(s):  
Rafael Sanjuán ◽  
Miguel R. Nebot ◽  
Nicola Chirico ◽  
Louis M. Mansky ◽  
Robert Belshaw

ABSTRACT Accurate estimates of virus mutation rates are important to understand the evolution of the viruses and to combat them. However, methods of estimation are varied and often complex. Here, we critically review over 40 original studies and establish criteria to facilitate comparative analyses. The mutation rates of 23 viruses are presented as substitutions per nucleotide per cell infection (s/n/c) and corrected for selection bias where necessary, using a new statistical method. The resulting rates range from 10−8 to10−6 s/n/c for DNA viruses and from 10−6 to 10−4 s/n/c for RNA viruses. Similar to what has been shown previously for DNA viruses, there appears to be a negative correlation between mutation rate and genome size among RNA viruses, but this result requires further experimental testing. Contrary to some suggestions, the mutation rate of retroviruses is not lower than that of other RNA viruses. We also show that nucleotide substitutions are on average four times more common than insertions/deletions (indels). Finally, we provide estimates of the mutation rate per nucleotide per strand copying, which tends to be lower than that per cell infection because some viruses undergo several rounds of copying per cell, particularly double-stranded DNA viruses. A regularly updated virus mutation rate data set will be available at www.uv.es/rsanjuan/virmut .


2001 ◽  
Vol 75 (2) ◽  
pp. 569-578 ◽  
Author(s):  
Seong Kug Eo ◽  
Sujin Lee ◽  
Sangjun Chun ◽  
Barry T. Rouse

ABSTRACT In this study, we examined the effects of murine chemokine DNA, as genetic adjuvants given mucosally, on the systemic and distal mucosal immune responses to plasmid DNA encoding gB of herpes simplex virus (HSV) by using the mouse model. The CC chemokines macrophage inflammatory protein 1β (MIP-1β) and monocyte chemotactic protein 1 (MCP-1) biased the immunity to the Th2-type pattern as judged by the ratio of immunoglobulin isotypes and interleukin-4 cytokine levels produced by CD4+ T cells. The CXC chemokine MIP-2 and the CC chemokine MIP-1α, however, mounted immune responses of the Th1-type pattern, and such a response rendered recipients more resistant to HSV vaginal infection. In addition, MIP-1α appeared to act via the upregulation of antigen-presenting cell (APC) function and the expression of costimulatory molecules (B7-1 and B7-2), whereas MIP-2 enhanced Th1-type CD4+ T-cell-mediated adaptive immunity by increasing gamma interferon secretion from activated NK cells. Our results emphasize the value of using the mucosal route to administer DNA modulators such as chemokines that function as adjuvants by regulating the activity of innate immunity. Our findings provide new insight into the value of CXC and CC chemokines, which act on different innate cellular components as the linkage signals between innate and adaptive immunity in mucosal DNA vaccination.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e34040 ◽  
Author(s):  
David Gurarie ◽  
Stephan Karl ◽  
Peter A. Zimmerman ◽  
Charles H. King ◽  
Timothy G. St. Pierre ◽  
...  

mSphere ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Calvin P. Sjaarda ◽  
Jennifer L. Guthrie ◽  
Samira Mubareka ◽  
Jared T. Simpson ◽  
Bettina Hamelin ◽  
...  

ABSTRACT Genome-wide variation in SARS-CoV-2 reveals evolution and transmission dynamics which are critical considerations for disease control and prevention decisions. Here, we review estimates of the genome-wide viral mutation rates, summarize current COVID-19 case load in the province of Ontario, Canada (5 January 2021), and analyze published SARS-CoV-2 genomes from Ontario (collected prior to 24 November 2020) to test for more infectious genetic variants or lineages. The reported mutation rate (∼10−6 nucleotide [nt]−1 cycle−1) for SARS-CoV-2 is typical for coronaviruses. Analysis of published SARS-CoV-2 genomes revealed that the G614 spike protein mutation has dominated infections in Ontario and that SARS-CoV-2 lineages present in Ontario have not differed significantly in their rate of spread. These results suggest that the SARS-CoV-2 population circulating in Ontario has not changed significantly to date. However, ongoing genome monitoring is essential for identification of new variants and lineages that may contribute to increased viral transmission.


2017 ◽  
Author(s):  
Alexander Martynov ◽  
Konstantin Severinov ◽  
Yaroslav Ispolatov

AbstractWe estimate the number of spacers in a CRISPR array of a bacterium which maximizes its protection against a viral attack. The optimality follows from a competition between two trends: too few distinct spacers make the bacteria vulnerable to an attack by a virus with mutated corresponding protospacers, while an excessive variety of spacers dilutes the number of the CRISPR complexes armed with the most recent and thus most effective spacers. We first evaluate the optimal number of spacers in a simple scenario of an infection by a single viral species and later consider a more general case of multiple viral species. We find that depending on such parameters as the concentration of CRISPR-CAS interference complexes and its preference to arm with more recently acquired spacers, the rate of viral mutation, and the number of viral species, the predicted optimal array length lies within a range quite reasonable from the viewpoint of recent experiments.Author summaryCRISPR-Cas system is an adaptive immunity defense in bacteria and archaea against viruses. It works by accumulating in bacterial genome an array of spacers, or fragments of virus DNA from previous attacks. By matching spacers to corresponding parts of virus DNA called protospacers, CRISPR-Cas system identifies and destroys intruder DNA. Here we theoretically estimate the number of spacers that maximizes bacterial survival. This optimum emerges from a competition between two trends: More spacers allow a bacterium to hedge against mutations in viral protospacers. However, keeping too many spacers makes the older ones inefficient because of accumulation of mutations in corresponding protospacers in viruses. Thus, fewer CRISPR-Cas molecular machines are left armed with more efficient young spacers. We have shown that a higher efficiency of CRISPR-Cas system allows a bacterium to utilize more spacers, increasing the optimal array length. On contrary, a higher viral mutation rate makes older spacers useless and favors shorter arrays. A higher diversity in viral species reduces the efficiency of CRISPR-Cas but does not necessary lead to longer arrays. We think that our study provides a new viewpoint at a huge variety in the observed array lengths and adds relevance to evolutionary models of bacterial-phage coexistence.


2021 ◽  
Vol 288 (1961) ◽  
Author(s):  
Jake L. Weissman ◽  
Ellinor O. Alseth ◽  
Sean Meaden ◽  
Edze R. Westra ◽  
Jed A. Fuhrman

Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas adaptive immune systems enable bacteria and archaea to efficiently respond to viral pathogens by creating a genomic record of previous encounters. These systems are broadly distributed across prokaryotic taxa, yet are surprisingly absent in a majority of organisms, suggesting that the benefits of adaptive immunity frequently do not outweigh the costs. Here, combining experiments and models, we show that a delayed immune response which allows viruses to transiently redirect cellular resources to reproduction, which we call ‘immune lag’, is extremely costly during viral outbreaks, even to completely immune hosts. Critically, the costs of lag are only revealed by examining the early, transient dynamics of a host–virus system occurring immediately after viral challenge. Lag is a basic parameter of microbial defence, relevant to all intracellular, post-infection antiviral defence systems, that has to-date been largely ignored by theoretical and experimental treatments of host-phage systems.


Sign in / Sign up

Export Citation Format

Share Document