scholarly journals The Dynamic Transition of Persistence toward the Viable but Nonculturable State during Stationary Phase Is Driven by Protein Aggregation

mBio ◽  
2021 ◽  
Author(s):  
Liselot Dewachter ◽  
Celien Bollen ◽  
Dorien Wilmaerts ◽  
Elen Louwagie ◽  
Pauline Herpels ◽  
...  

While persistence and the viable but nonculturable (VBNC) state are currently investigated in isolation, our results strongly indicate that these phenotypes represent different stages of the same dormancy program and that they should therefore be studied within the same conceptual framework. Moreover, we show here for the first time that the dynamics of protein aggregation perfectly match the onset and further development of bacterial dormancy and that different dormant phenotypes are linked to different stages of protein aggregation.

2003 ◽  
Vol 47 (3) ◽  
pp. 1154-1156 ◽  
Author(s):  
Maria del Mar Lleò ◽  
Barbara Bonato ◽  
Caterina Signoretto ◽  
Pietro Canepari

ABSTRACT Stressed vancomycin-resistant enterococci (VRE) can activate a survival strategy known as the viable but nonculturable (VBNC) state and are able to maintain vancomycin resistance. During restoration of division they continue to express the vancomycin resistance trait. We suggest that VBNC enterococci may constitute further reservoirs of VRE and therefore represent an additional risk for human health.


RSC Advances ◽  
2020 ◽  
Vol 10 (27) ◽  
pp. 15997-16008 ◽  
Author(s):  
Dejing Liu ◽  
Bo Hu ◽  
Dingfa Peng ◽  
Shan Lu ◽  
Shunxiang Gao ◽  
...  

With whole-bacteria SELEX, we got aptamers that can bind to V. vulnificus in VBNC Status for the first time.


2006 ◽  
Vol 72 (10) ◽  
pp. 6508-6513 ◽  
Author(s):  
Thomas Vattakaven ◽  
Peter Bond ◽  
Graham Bradley ◽  
Colin B. Munn

ABSTRACT We compared induction of the viable-but-nonculturable (VBNC) state in two Vibrio spp. isolated from diseased corals by starving the cells and maintaining them in artificial seawater at 4 and 20°C. In Vibrio tasmaniensis, isolated from a gorgonian octocoral growing in cool temperate water (7 to 17°C), the VBNC state was not induced by incubation at 4°C after 157 days. By contrast, Vibrio shiloi, isolated from a coral in warmer water (16 to 30°C), was induced into the VBNC state by incubation at 4°C after 126 days. This result is consistent with reports of low-temperature induction in several Vibrio spp. A large proportion of the V. tasmaniensis population became VBNC after incubation for 157 days at 20°C, and V. shiloi became VBNC after incubation for 126 days at 20°C. Resuscitation of V. shiloi cells from cultures at both temperatures was achieved by nutrient addition, suggesting that starvation plays a major role in inducing the VBNC state. Our results suggest that viable V. shiloi could successfully persist in the VBNC state in seawater for significant periods at the lower temperatures that may be experienced in winter conditions, which may have an effect on the seasonal incidence of coral bleaching. For both species, electron microscopy revealed that prolonged starvation resulted in transformation of the cells from rods to cocci, together with profuse blebbing, production of a polymer-like substance, and increased membrane roughness. V. shiloi cells developed an increased periplasmic space and membrane curling; these features were absent in V. tasmaniensis.


2002 ◽  
Vol 184 (23) ◽  
pp. 6739-6745 ◽  
Author(s):  
Sabina Heim ◽  
Maria Del Mar Lleo ◽  
Barbara Bonato ◽  
Carlos A. Guzman ◽  
Pietro Canepari

ABSTRACT The protein expression patterns of exponentially growing, starved, and viable but nonculturable (VBNC) Enterococcus faecalis cells were analyzed to establish whether differences exist between the VBNC state and other stress responses. The results indicate that the protein profile of VBNC cells differs from that of either starved or exponentially growing bacteria. This demonstrates that the VBNC state is a distinct physiological phase within the life cycle of E. faecalis, which is activated in response to multiple environmental stresses.


2006 ◽  
Vol 73 (4) ◽  
pp. 1349-1354 ◽  
Author(s):  
Meng Du ◽  
Jixiang Chen ◽  
Xiaohua Zhang ◽  
Aijuan Li ◽  
Yun Li ◽  
...  

ABSTRACT Edwardsiella tarda is pathogen of fish and other animals. The aim of this study was to investigate the viable but nonculturable (VBNC) state and virulence retention of this bacterium. Edwardsiella tarda CW7 was cultured in sterilized aged seawater at 4�C. Total cell counts remained constant throughout the 28-day period by acridine orange direct counting, while plate counts declined to undetectable levels (<0.1 CFU/ml) within 28 days by plate counting. The direct viable counts, on the other hand, declined to ca. 109 CFU/ml active cells and remained fairly constant at this level by direct viable counting. These results indicated that a large population of cells existed in a viable but nonculturable state. VBNC E. tarda CW7 could resuscitate in experimental chick embryos and in the presence of nutrition with a temperature upshift. The resuscitative times were 6 days and 8 days, respectively. The morphological changes of VBNC, normal, and resuscitative E. tarda CW7 cells were studied with a scanning electron microscope. The results showed that when the cells entered into the VBNC state, they gradually changed in shape from short rods to coccoid and decreased in size, but the resuscitative cells did not show any obvious differences from the normal cells. The VBNC and the resuscitative E. tarda CW7 cells were intraperitoneally inoculated into turbot separately, and the fish inoculated with the resuscitative cells died within 7 days, which suggested that VBNC E. tarda CW7 might retain pathogenicity.


2021 ◽  
Author(s):  
Liselot Dewachter ◽  
Celien Bollen ◽  
Dorien Wilmaerts ◽  
Elen Louwagie ◽  
Pauline Herpels ◽  
...  

AbstractDecades of research into bacterial persistence has been unable to fully characterize this antibiotic-tolerant phenotype, thereby hampering the development of therapies effective against chronic infections. Although some active persister mechanisms have been identified, the prevailing view is that cells become persistent because they enter a dormant state. We therefore characterized starvation-induced dormancy in Escherichia coli. Our findings indicate that dormancy develops gradually; persistence strongly increases during stationary phase and decreases again as persisters enter the viable but nonculturable (VBNC) state. Importantly, we show that dormancy development is tightly associated with progressive protein aggregation, which occurs concomitantly with ATP depletion during starvation. Persisters contain protein aggregates in an early developmental stage while VBNC cells carry more mature aggregates. Finally, we show that at least one persister protein, ObgE, works by triggering aggregation and thereby changing the dynamics of persistence and dormancy development. These findings provide evidence for a genetically-controlled, gradual development of persisters and VBNC cells through protein aggregation.


2018 ◽  
Vol 200 (20) ◽  
Author(s):  
Mesrop Ayrapetyan ◽  
Tiffany Williams ◽  
James D. Oliver

ABSTRACTBacteria have evolved numerous means of survival in adverse environments with dormancy, as represented by “persistence” and the “viable but nonculturable” (VBNC) state, now recognized to be common modes for such survival. VBNC cells have been defined as cells which, induced by some stress, become nonculturable on media that would normally support their growth but which can be demonstrated by various methods to be alive and capable of returning to a metabolically active and culturable state. Persister cells have been described as a population of cells which, while not being antibiotic resistant, are antibiotic tolerant. This drug-tolerant phenotype is thought to be a result of stress-induced and stochastic physiological changes as opposed to mutational events leading to true resistance. In this review, we describe these two dormancy strategies, characterize the molecular underpinnings of each state, and highlight the similarities and differences between them. We believe these survival modes represent a continuum between actively growing and dead cells, with VBNC cells being in a deeper state of dormancy than persister cells.


Sign in / Sign up

Export Citation Format

Share Document