temperature induction
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 16)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 1211 (1) ◽  
pp. 012015
Author(s):  
A N Kachanov ◽  
Y S Stepanov ◽  
N A Kachanov ◽  
V A Chernyshov ◽  
D A Korenkov

Abstract The article discusses possible options for a low-temperature induction heating system (LTIHS) of flat metal products in a traveling electromagnetic field. The problem of calculating eddy currents, active and reactive powers induced in a heated flat object, as well as electromagnetic forces acting on the object moving it in a given direction, is posed and solved. A mathematical model has been developed that takes into account the dependence of the influence on the main parameters of the electromagnetic field of the following factors: geometric dimensions of the air gap between the poles of the magnetic circuit and the heated flat body; the longitudinal edge effect caused by the open circuit of the magnetic circuit of the inductor, as well as the transverse edge effect associated with the appearance of the longitudinal components of eddy currents in a heated flat object. The solution of particular problems of LTIHS in one- and two-dimensional formulation allows them to be simplified and to perform calculations for various design variants of induction heating devices with a traveling electromagnetic field, using a one-dimensional model that explicitly takes into account the features of electromagnetic processes in the systems under study.


Author(s):  
Marjan Abri Aghdam ◽  
Mohammad Reza Tohidkia ◽  
Elham Ghamghami ◽  
Asadollah Ahmadikhah ◽  
Morteza Khanmahamadi ◽  
...  

Purpose: Production of functional recombinant antibody fragments in the periplasm of E. coli is a prerequisite step to achieve sufficient reagent for preclinical studies. Thus, the cost-effective and lab-scale production of antibody fragments demands the optimization of culture conditions. Methods: The culture conditions such as temperature, optical density (OD600) at induction, induction time, and IPTG concentration were investigated to optimize the functional expression of a phage-derived scFv molecule using a design of experiment (DoE). Additionally, the effects of different culture media and osmolyte supplements on the expression yield of scFv were examined. Results: The developed 2FI regression model indicated the significant linear effect of the incubation temperature, the induction time, and the induction OD600 on the expression yield of functional scFv. Besides, the statistical analysis indicated that two significant interactions of the temperature/induction time and the temperature/induction OD600 significantly interplay to increase the yield. Further optimization showed that the expression level of functional scFv was the most optimal when the cultivation was undertaken either in the TB medium or in the presence of media supplements of 0.5 M sorbitol or 100 mM glycine betaine. Conclusion: In the present study, for the first time, we successfully implemented DoE to comprehensively optimize the culture conditions for the expression of scFv molecules in a phage antibody display setting, where scFv molecules can be isolated from a tailor-made phage antibody library known as "Human Single Fold scFv Library I."


2021 ◽  
Vol 229 ◽  
pp. 111621
Author(s):  
Jens Löschmann ◽  
Niccolò Stolzuoli ◽  
Mark Alexander Ahrens ◽  
Peter Mark

2020 ◽  
Vol 129 (1D) ◽  
pp. 61-65
Author(s):  
Van Thanh Dang ◽  
Anh Thi Hoang ◽  
Gia Cat Tuong Tran ◽  
Thi Huyen Tran Pham ◽  
Le Thi Ha Thanh ◽  
...  

Catechol 1,2-dioxygenase (CAT1) is a key enzyme for the ortho-cleavage pathway involved in the degradation of dibenzofuran, a dioxin derivative, which is a highly toxic environmental pollutant. The present study aims to investigate appropriate culture conditions for enhancing the expression of the cat1 gene encoding CAT1 enzyme from Burkholderia cepacia DF4 in Escherichia coli M15. The optimized culture conditions for gene expression are cell density at the time of induction, shaking speed, induction temperature, induction time, and inducer concentration. The highest level for CAT1 was obtained at the IPTG concentration of 1.2 mM, 10 hours after induction at 35 °C, shaking speed 200 rpm with cell density at OD600 0.7.


2020 ◽  
Vol 46 (15) ◽  
pp. 23636-23642
Author(s):  
Yo Han Kim ◽  
Tae Ho Shin ◽  
Jae-ha Myung

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1244
Author(s):  
Cong Chen ◽  
Lanting Zeng ◽  
Haiyi Zhao ◽  
Qingsheng Ye

Phalaenopsis amabilis, one of the most important plants in the international flower market due to its graceful shape and colorful flowers, is an orchid that undergoes vernalization and requires low-temperature treatment for flowering. There have been few reports on the proteomics of the development of flower buds. In this study, isobaric tags for relative and absolute quantification (iTRAQ) were used to identify 5064 differentially expressed proteins in P. amabilis under low-temperature treatment; of these, 42 were associated with early floral induction, and 18 were verified by mass spectrometry multi-reaction monitoring (MRM). The data are available via ProteomeXchange under identifier PXD013908. Among the proteins associated with the vernalization pathway, PEQU_11434 (glycine-rich RNA-binding protein GRP1A-like) and PEQU_19304 (FT, VRN3 homolog) were verified by MRM, and some other important proteins related to vernalization and photoperiod pathway that were detected by iTRAQ but not successfully verified by MRM, such as PEQU_11045 (UDP-N-acetylglucosamine diphosphorylase), phytochromes A (PEQU_13449, PEQU_35378), B (PEQU_09249), and C (PEQU_41401). Our data revealed a regulation network of the early development of flower buds in P. amabilis under low temperature induction.


Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 81 ◽  
Author(s):  
Qiong He ◽  
Yanjing Ren ◽  
Wenbin Zhao ◽  
Ru Li ◽  
Lugang Zhang

To elucidate the effect of low temperature on anthocyanin biosynthesis in purple head Chinese cabbage, we analyzed anthocyanin accumulation and related gene expression in the seedlings of purple head Chinese cabbage, white head parent Chinese cabbage, and its purple male parent under a normal 25 °C temperature and a low 12 °C temperature. Anthocyanin accumulation in purple lines was strongly induced by low temperature, and the total anthocyanin content of seedlings was significantly enhanced. In addition, nearly all phenylpropanoid metabolic pathway genes (PMPGs) were down-regulated, some early biosynthesis genes (EBGs) were up-regulated, and nearly all late biosynthesis genes (LBGs) directly involved in anthocyanin biosynthesis showed higher expression levels in purple lines after low-temperature induction. Interestingly, a R2R3-MYB transcription factor (TF) gene ‘BrMYB2’ and a basic-helix-loop-helix (bHLH) regulatory gene ‘BrTT8’ were highly up-regulated in purple lines after low temperature induction, and two negative regulatory genes ‘BrMYBL2.1’ and ‘BrLBD38.2’ were up-regulated in the white line. BrMYB2 and BrTT8 may play important roles in co-activating the anthocyanin structural genes in purple head Chinese cabbage after low-temperature induction, whereas down-regulation of BrMYB2 and up-regulation of some negative regulators might be responsible for white head phenotype formation. Data presented here provide new understanding into the anthocyanin biosynthesis mechanism during low temperature exposure in Brassica crops.


2019 ◽  
Vol 60 (1) ◽  
Author(s):  
Ta-Ping Hsuan ◽  
Pei-Rong Jhuang ◽  
Wen-Chin Wu ◽  
Huu-Sheng Lur

Abstract Background The subtropical rice varieties grown in Taiwan are mainly Japonica-type rice varieties, which are grown in the southernmost- and lowest-latitude Japonica type rice cultivation area in the world. In Taiwan, seedlings that are planted either by transplanting or direct seeding in the second crop will face the season with the highest temperatures during the year. High-temperature stress severely influences early rice growth and causes yield losses. With global warming deteriorating, this problem is becoming increasingly severe. This study attempted to establish a high-efficiency and time-saving screening tool for rice varieties that exhibit thermotolerance during the early growth stages and further identify good donors with better tolerance for high temperature stress from Taiwan Japonica type rice germplasm. Results During the initial germination stage, there were significantly different responses to heat stress among the different rice varieties. After the temperature induction response technique (TIR) treatment, the seedling survival rate and relative growth rate of the rice varieties under high temperature stress were significantly improved. In addition, the seedlings of the thermotolerant varieties demonstrated greater thermotolerance performance in the pot experiment as well as cell membrane stability (CMS) and cell activity (2,3,5-triphenyl-tetrazolium chloride; TTC) test results. However, the correlation between the thermotolerance of the seedlings and seeds was low. A phylogenetic dendrogram was plotted and revealed that thermotolerant genes did not concentrate in specific clusters. Furthermore, there was a non-significant correlation between the thermotolerance of the varieties and the years in which they were released. Conclusions The temperature induction screening tool established by this study could determine the potential of each variety to adapt to high temperature stress. Additionally, thermotolerance during different growth stages (i.e., the germination, seedling, and grain maturation stages) exhibited low correlations. In this study, the varieties obtained through preliminary screening (i.e., TK14, HC56, TT30, TNG70, and TK8) exhibited outstanding thermotolerance. The screen tools and thermotolerance varieties could be valuable resources for the countries that grow Japonica type rice to apply when breeding thermotolerant varieties in the future.


Sign in / Sign up

Export Citation Format

Share Document