scholarly journals Dectin-1 Stimulation of Hematopoietic Stem and Progenitor Cells Occurs In Vivo and Promotes Differentiation Toward Trained Macrophages via an Indirect Cell-Autonomous Mechanism

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Cristina Bono ◽  
Alba Martínez ◽  
Javier Megías ◽  
Daniel Gozalbo ◽  
Alberto Yáñez ◽  
...  

ABSTRACT Toll-like receptor (TLR) agonists drive hematopoietic stem and progenitor cells (HSPCs) to differentiate along the myeloid lineage. In this study, we used an HSPC transplantation model to investigate the possible direct interaction of β-glucan and its receptor (dectin-1) on HSPCs in vivo. Purified HSPCs from bone marrow of B6Ly5.1 mice (CD45.1 alloantigen) were transplanted into dectin-1−/− mice (CD45.2 alloantigen), which were then injected with β-glucan (depleted zymosan). As recipient mouse cells do not recognize the dectin-1 agonist injected, interference by soluble mediators secreted by recipient cells is negligible. Transplanted HSPCs differentiated into macrophages in response to depleted zymosan in the spleens and bone marrow of recipient mice. Functionally, macrophages derived from HSPCs exposed to depleted zymosan in vivo produced higher levels of inflammatory cytokines (tumor necrosis factor alpha [TNF-α] and interleukin 6 [IL-6]). These results demonstrate that trained immune responses, already described for monocytes and macrophages, also take place in HSPCs. Using a similar in vivo model of HSPC transplantation, we demonstrated that inactivated yeasts of Candida albicans induce differentiation of HSPCs through a dectin-1- and MyD88-dependent pathway. Soluble factors produced following exposure of HSPCs to dectin-1 agonists acted in a paracrine manner to induce myeloid differentiation and to influence the function of macrophages derived from dectin-1-unresponsive or β-glucan-unexposed HSPCs. Finally, we demonstrated that an in vitro transient exposure of HSPCs to live C. albicans cells, prior to differentiation, is sufficient to induce a trained phenotype of the macrophages they produce in a dectin-1- and Toll-like receptor 2 (TLR2)-dependent manner. IMPORTANCE Invasive candidiasis is an increasingly frequent cause of serious and often fatal infections. Understanding host defense is essential to design novel therapeutic strategies to boost immune protection against Candida albicans. In this article, we delve into two new concepts that have arisen over the last years: (i) the delivery of myelopoiesis-inducing signals by microbial components directly sensed by hematopoietic stem and progenitor cells (HSPCs) and (ii) the concept of “trained innate immunity” that may also apply to HSPCs. We demonstrate that dectin-1 ligation in vivo activates HSPCs and induces their differentiation to trained macrophages by a cell-autonomous indirect mechanism. This points to new mechanisms by which pathogen detection by HSPCs may modulate hematopoiesis in real time to generate myeloid cells better prepared to deal with the infection. Manipulation of this process may help to boost the innate immune response during candidiasis.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 31-31
Author(s):  
Wen-Shu Wu ◽  
Dong Xu ◽  
Stefan Heinrichs ◽  
A. Thomas Look

Abstract An antiapoptotic role for Slug/Snail in mammals was suggested by studies in C. elegans, where CES-1/Scratch, a member of the Slug/Snail superfamily, was found to control the apoptotic death of NSM sister neurons by acting as a transcriptional repressor of EGL-1, a BH3-only proapoptotic protein. Identification of Slug as the target gene of the E2A-HLF oncoprotein in human pro-B leukemia cells led us to demonstrate its antiapoptotic function in IL-3-dependent murine pro-B cells. In contrast to its aberrant expression in pro-B leukemia cells, endogenous Slug is normally expressed in both LT-HSC and ST-HSC, as well as committed progenitors of the myeloid series, but not in pro-B and pro-T cells, implying its function in myelopoiesis. Using Slug−/− mice produced in our laboratory, we showed that these knockouts are much more radiosensitive than Slug+/− and wild-type mice, and that apoptotic cells increase significantly in the hematopoietic progenitor cells of Slug−/− mice as compared to wild-type mice following γ-irradiation, indicating a radioprotective function in vivo. We showed here that although the development of myeloid progenitors is not impaired under steady-state conditions, their repopulation is incomplete γ-irradiated in in Slug−/− mice. We demonstrate further the radiation-induced death of Slug−/− mice is exclusively a result of bone marrow failure with no apparent contribution from systemic injures to other tissues. By two-way bone marrow transplantation, we provide firm evidence that Slug protects mice from γ-irradiation-induced death in a cell-autonomous manner. Interestingly, regenerative capacity of hematopoietic stem cells (HSC) was retained in irradiated Slug−/− mice, which could be rescued by wild-type bone marrow cells after irradiation, indicating that Slug exerts its radioprotective function in myeloid progenitors rather than HSCs. Furthermore, we establish that Slug radioprotects mice by antagonizing downstream of the p53-mediated apoptotic signaling through inhibition of the p53-resposive proapoptotic gene Puma, leading in turn to inhibition of the mitochondria-dependent apoptotic pathway activated by γ-irradiation in myeloid progenitors. More interestingly, we observed that Slug is inducible by γ-irradiation in a p53-dependent manner. Together, our findings implicate a novel Slug-mediated feedback mechanism by which p53 control programmed cell death in myeloid progenitor cells in vivo in response to γ-irradiation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3401-3401
Author(s):  
Rebecca L Porter ◽  
Mary A Georger ◽  
Laura M Calvi

Abstract Abstract 3401 Hematopoietic stem and progenitor cells (HSPCs) are responsible for the continual production of all mature blood cells during homeostasis and times of stress. These cells are known to be regulated in part by the bone marrow microenvironment in which they reside. We have previously reported that the microenvironmentally-produced factor Prostaglandin E2 (PGE2) expands HSPCs when administered systemically in naïve mice (Porter, Frisch et. al., Blood, 2009). However, the mechanism mediating this expansion remains unclear. Here, we demonstrate that in vivo PGE2 treatment inhibits apoptosis of HSPCs in naïve mice, as measured by Annexin V staining (p=0.0083, n=6–7 mice/group) and detection of active-Caspase 3 (p=0.01, n=6–7 mice/group). These data suggest that inhibition of apoptosis is at least one mechanism by which PGE2 expands HSPCs. Since PGE2 is a local mediator of injury and is known to play a protective role in other cell types, we hypothesized that it could be an important microenvironmental regulator of HSPCs during times of injury. Thus, these studies explored the role of PGE2 signaling in the bone marrow following myelosuppressive injury using a radiation injury model. Endogenous PGE2 levels in the bone marrow increased 2.9-fold in response to a sub-lethal dose of 6.5 Gy total body irradiation (TBI)(p=0.0004, n=3–11 mice/group). This increase in PGE2 correlated with up-regulation of microenvironmental Cyclooxygenase-2 (Cox-2) mRNA (p=0.0048) and protein levels at 24 and 72 hr post-TBI, respectively. Further augmentation of prostaglandin signaling following 6.5 Gy TBI by administration of exogenous 16,16-dimethyl-PGE2 (dmPGE2) enhanced the survival of functional HSPCs acutely after injury. At 24 hr post-TBI, the bone marrow of dmPGE2-treated animals contained significantly more LSK cells (p=0.0037, n=13 mice/group) and colony forming unit-spleen cells (p=0.037, n=5 mice/group). Competitive transplantation assays at 72 hr post-TBI demonstrated that bone marrow cells from irradiated dmPGE2-treated mice exhibited increased repopulating activity compared with cells from vehicle-treated mice. Taken together, these results indicate that dmPGE2 treatment post-TBI increases survival of functional HSPCs. Since PGE2 can inhibit apoptosis of HSPCs in naïve mice, the effect of dmPGE2 post-TBI on apoptosis was also investigated. HSPCs isolated from mice 24 hr post-TBI demonstrated statistically significant down-regulation of several pro-apoptotic genes and up-regulation of anti-apoptotic genes in dmPGE2-treated animals (3 separate experiments with n=4–8 mice/group in each), suggesting that dmPGE2 initiates an anti-apoptotic program in HSPCs following injury. Notably, there was no significant change in expression of the anti-apoptotic gene Survivin, which has previously been reported to increase in response to ex vivo dmPGE2 treatment of bone marrow cells (Hoggatt et. al., Blood, 2009), suggesting differential effects of dmPGE2 in vivo and/or in an injury setting. Additionally, to ensure that this inhibition of apoptosis was not merely increasing survival of damaged and non-functional HSPCs, the effect of early treatment with dmPGE2 post-TBI on hematopoietic recovery was assayed by monitoring peripheral blood counts. Interestingly, dmPGE2 treatment in the first 72 hr post-TBI significantly accelerated recovery of platelet levels and hematocrit compared with injured vehicle-treated mice (n=12 mice/group). Immunohistochemical analysis of the bone marrow of dmPGE2-treated mice also exhibited a dramatic activation of Cox-2 in the bone marrow microenvironment. This suggests that the beneficial effect of dmPGE2 treatment following injury may occur, both through direct stimulation of hematopoietic cells and also via activation of the HSC niche. In summary, these data indicate that PGE2 is a critical microenvironmental regulator of hematopoietic cells in response to injury. Exploitation of the dmPGE2-induced initiation of an anti-apoptotic program in HSPCs may represent a useful method to increase survival of these cells after sub-lethal radiation injury. Further, amplification of prostaglandin signaling by treatment with PGE2 agonists may also represent a novel approach to meaningfully accelerate recovery of peripheral blood counts in patients with hematopoietic system injury during a vulnerable time when few therapeutic options are currently available. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 513-513
Author(s):  
Pekka Jaako ◽  
Shubhranshu Debnath ◽  
Karin Olsson ◽  
Axel Schambach ◽  
Christopher Baum ◽  
...  

Abstract Abstract 513 Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia associated with physical abnormalities and predisposition to cancer. Mutations in genes that encode ribosomal proteins have been identified in approximately 60–70 % of the patients. Among these genes, ribosomal protein S19 (RPS19) is the most common DBA gene (25 % of the cases). Current DBA therapies involve risks for serious side effects and a high proportion of deaths are treatment-related underscoring the need for novel therapies. We have previously demonstrated that enforced expression of RPS19 improves the proliferation, erythroid colony-forming potential and differentiation of patient derived RPS19-deficient hematopoietic progenitor cells in vitro (Hamaguchi, Blood 2002; Hamaguchi, Mol Ther 2003). Furthermore, RPS19 overexpression enhances the engraftment and erythroid differentiation of patient-derived hematopoietic stem and progenitor cells when transplanted into immunocompromised mice (Flygare, Exp Hematol 2008). Collectively these studies suggest the feasibility of gene therapy in the treatment of RPS19-deficient DBA. In the current project we have assessed the therapeutic efficacy of gene therapy using a mouse model for RPS19-deficient DBA (Jaako, Blood 2011; Jaako, Blood 2012). This model contains an Rps19-targeting shRNA (shRNA-D) that is expressed by a doxycycline-responsive promoter located downstream of Collagen A1 gene. Transgenic animals were bred either heterozygous or homozygous for the shRNA-D in order to generate two models with intermediate or severe Rps19 deficiency, respectively. Indeed, following transplantation, the administration of doxycycline to the recipients with homozygous shRNA-D bone marrow results in an acute and lethal bone marrow failure, while the heterozygous shRNA-D recipients develop a mild and chronic phenotype. We employed lentiviral vectors harboring a codon-optimized human RPS19 cDNA driven by the SFFV promoter, followed by IRES and GFP (SFFV-RPS19). A similar vector without the RPS19 cDNA was used as a control (SFFV-GFP). To assess the therapeutic potential of the SFFV-RPS19 vector in vivo, transduced c-Kit enriched bone marrow cells from control and homozygous shRNA-D mice were injected into lethally irradiated wild-type mice. Based on the percentage of GFP-positive cells, transduction efficiencies varied between 40 % and 60 %. Three months after transplantation, recipient mice were administered doxycycline in order to induce Rps19 deficiency. After two weeks of doxycycline administration, the recipients transplanted with SFFV-RPS19 or SFFV-GFP control cells showed no differences in blood cellularity. Remarkably, at the same time-point the recipients with SFFV-GFP homozygous shRNA-D bone marrow showed a dramatic decrease in blood cellularity that led to death, while the recipients with SFFV-RPS19 shRNA-D bone marrow showed nearly normal blood cellularity. These results demonstrate the potential of enforced expression of RPS19 to reverse the severe anemia and bone marrow failure in DBA. To assess the reconstitution advantage of transduced hematopoietic stem and progenitor cells with time, we performed similar experiments with heterozygous shRNA-D bone marrow cells. We monitored the percentage of GFP-positive myeloid cells in the peripheral blood, which provides a dynamic read-out for bone marrow activity. After four months of doxycycline administration, the mean percentage of GFP-positive cells in the recipients with SFFV-RPS19 heterozygous shRNA-D bone marrow increased to 97 %, while no similar advantage was observed in the recipients with SFFV-RPS19 or SFFV-GFP control bone marrow, or SFFV-GFP heterozygous shRNA-D bone marrow. Consistently, SFFV-RPS19 conferred a reconstitution advantage over the non-transduced cells in the bone marrow. Furthermore, SFFV-RPS19 reversed the hypocellular bone marrow observed in the SFFV-GFP heterozygous shRNA-D recipients. Taken together, using mouse models for RPS19-deficient DBA, we demonstrate that the enforced expression of RPS19 rescues the lethal bone marrow failure and confers a strong reconstitution advantage in vivo. These results provide a proof-of-principle for gene therapy in the treatment of RPS19-deficient DBA. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 217 (9) ◽  
Author(s):  
James W. Swann ◽  
Lada A. Koneva ◽  
Daniel Regan-Komito ◽  
Stephen N. Sansom ◽  
Fiona Powrie ◽  
...  

An important comorbidity of chronic inflammation is anemia, which may be related to dysregulated activity of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM). Among HSPCs, we found that the receptor for IL-33, ST2, is expressed preferentially and highly on erythroid progenitors. Induction of inflammatory spondyloarthritis in mice increased IL-33 in BM plasma, and IL-33 was required for inflammation-dependent suppression of erythropoiesis in BM. Conversely, administration of IL-33 in healthy mice suppressed erythropoiesis, decreased hemoglobin expression, and caused anemia. Using purified erythroid progenitors in vitro, we show that IL-33 directly inhibited terminal maturation. This effect was dependent on NF-κB activation and associated with altered signaling events downstream of the erythropoietin receptor. Accordingly, IL-33 also suppressed erythropoietin-accelerated erythropoiesis in vivo. These results reveal a role for IL-33 in pathogenesis of anemia during inflammatory disease and define a new target for its treatment.


Stem Cells ◽  
2012 ◽  
Vol 30 (7) ◽  
pp. 1486-1495 ◽  
Author(s):  
Javier Megías ◽  
Alberto Yáñez ◽  
Silvia Moriano ◽  
José-Enrique O'Connor ◽  
Daniel Gozalbo ◽  
...  

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 81-81
Author(s):  
Silvana Di Giandomenico ◽  
Pouneh Kermani ◽  
Nicole Molle ◽  
Mia Yabut ◽  
Fabienne Brenet ◽  
...  

Abstract Background: Chronic anemia is a significant problem affecting over 3 million Americans annually. Therapies are restricted to transfusion and Erythropoietin Stimulating Agents (ESA). There is a need for new approaches to treat chronic anemia. Immature erythroid progenitors are thought to be continuously produced and then permitted to survive and mature if there is sufficient erythropoietin (Epo) available. This model is elegant in that oxygen sensing within the kidney triggers Epo production so anemia can increase Epo and promote erythroid output. However, during homeostasis this model suggests that considerable energy is used to produce unneeded erythroid progenitors. We searched for independent control and compartmentalization of erythropoiesis that could couple early hematopoiesis to terminal erythroid commitment and maturation. Methods: We previously found the proportion of bone marrow megakaryocytes (MKs) staining for active, signaling-competent TGFβ transiently increases during bone marrow regeneration after chemotherapy. To assess the functional role of Mk-TGFβ, we crossed murine strains harboring a floxed allele of TGFβ1 (TGFβ1Flox/Flox) littermate with a Mk-specific Cre deleter to generate mice with Mk-specific deletion of TGFβ1 (TGFβ1ΔMk/ΔMk). We analyzed hematopoiesis of these mice using high-dimensional flow cytometry, confocal immunofluorescent microscopy and in vitro and in vivo assays of hematopoietic function (Colony forming assays, and in vivo transplantation). Results: Using validated, 9-color flow cytometry panels capable of quantifying hematopoietic stem cells (HSCs) and six other hematopoietic progenitor populations, we found that Mk-specific deletion of TGFβ1 leads to expansion of immature hematopoietic stem and progenitor cells (HSPCs) (Fig1A&B). Functional assays confirmed a more than three-fold increase in hematopoietic stem cells (HSCs) capable of serially-transplanting syngeneic recipients in the bone marrow (BM) of TGFβ1ΔMk/ΔMk mice compared to their TGFβ1Flox/Flox littermates. Expansion was associated with less quiescent (Go) HSCs implicating Mk-TGFβ in the control of HSC cell cycle entry. Similarly, in vitro colony forming cell assays and in vivo spleen colony forming assays confirmed expansion of functional progenitor cells in TGFβ1ΔMk/ΔMk mice. These results place Mk-TGFβ as a critical regulator of the size of the pool of immature HSPCs. We found that the blood counts and total BM cellularity of TGFβ1ΔMk/ΔMk mice was normal despite the dramatic expansion of immature HSPCs. Using a combination of confocal immunofluorescence microscopy (cleaved caspase 3) (Fig1C) and flow cytometry (Annexin V and cleaved caspase 3) (Fig1D), we found ~10-fold greater apoptosis of mature precursor cells in TGFβ1ΔMk/ΔMk BM and spleens. Coincident with this, we found the number of Epo receptor (EpoR) expressing erythroid precursors to be dramatically increased. Indeed, apoptosis of erythroid precursors peaked as they transitioned from dual positive Kit+EpoR+ precursors to single positive cells expressing EpoR alone. Epo levels were normal in the serum of these mice. We reasoned that the excess, unneeded EpoR+ cells were not supported physiologic Epo levels but might respond to even small doses of exogenous Epo. Indeed, we found that the excess erythroid apoptosis could be rescued by administration of very low doses of Epo (Fig1E). Whereas TGFβ1Flox/Flox mice showed minimal reticulocytosis and no change in blood counts, TGFβ1ΔMk/ΔMk mice responded with exuberant reticulocytosis and raised RBC counts almost 10% within 6 days (Fig. 1F). Low dose Epo also rescued survival of Epo receptor positive erythroid precursors in the bone marrow, spleen and blood of TGFβ1ΔMk/ΔMk mice. TGFβ1ΔMk/ΔMk mice showed a similarly brisk and robust erythropoietic response during recovery from phenylhydrazine-induced hemolysis (Fig.1G). Exogenous TGFβ worsened BM apoptosis and caused anemia in treated mice. Pre-treatment of wild-type mice with a TGFβ signaling inhibitor sensitized mice to low dose Epo. Conclusion: These results place megakaryocytic TGFβ1 as a gate-keeper that restricts the pool of immature HSPCs and couples immature hematopoiesis to the production of mature effector cells. This work promises new therapies for chronic anemias by combining TGFβ inhibitors to increase the outflow of immature progenitors with ESAs to support erythroid maturation. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document