scholarly journals A Class 1 Histone Deacetylase with Potential as an Antifungal Target

mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Ingo Bauer ◽  
Divyavaradhi Varadarajan ◽  
Angelo Pidroni ◽  
Silke Gross ◽  
Stefan Vergeiner ◽  
...  

ABSTRACTHistone deacetylases (HDACs) remove acetyl moieties from lysine residues at histone tails and nuclear regulatory proteins and thus significantly impact chromatin remodeling and transcriptional regulation in eukaryotes. In recent years, HDACs of filamentous fungi were found to be decisive regulators of genes involved in pathogenicity and the production of important fungal metabolites such as antibiotics and toxins. Here we present proof that one of these enzymes, the class 1 type HDAC RpdA, is of vital importance for the opportunistic human pathogenAspergillus fumigatus. Recombinant expression of inactivated RpdA shows that loss of catalytic activity is responsible for the lethal phenotype ofAspergillusRpdA null mutants. Furthermore, we demonstrate that a fungus-specific C-terminal region of only a few acidic amino acids is required for both the nuclear localization and catalytic activity of the enzyme in the model organismAspergillus nidulans. Since strains with single or multiple deletions of other classical HDACs revealed no or only moderate growth deficiencies, it is highly probable that the significant delay of germination and the growth defects observed in strains growing under the HDAC inhibitor trichostatin A are caused primarily by inhibition of catalytic RpdA activity. Indeed, even at low nanomolar concentrations of the inhibitor, the catalytic activity of purified RpdA is considerably diminished. Considering these results, RpdA with its fungus-specific motif represents a promising target for novel HDAC inhibitors that, in addition to their increasing impact as anticancer drugs, might gain in importance as antifungals against life-threatening invasive infections, apart from or in combination with classical antifungal therapy regimes.IMPORTANCEThis paper reports on the fungal histone deacetylase RpdA and its importance for the viability of the fungal pathogenAspergillus fumigatusand other filamentous fungi, a finding that is without precedent in other eukaryotic pathogens. Our data clearly indicate that loss of RpdA activity, as well as depletion of the enzyme in the nucleus, results in lethality of the correspondingAspergillusmutants. Interestingly, both catalytic activity and proper cellular localization depend on the presence of an acidic motif within the C terminus of RpdA-type enzymes of filamentous fungi that is missing from the homologous proteins of yeasts and higher eukaryotes. The pivotal role, together with the fungus-specific features, turns RpdA into a promising antifungal target of histone deacetylase inhibitors, a class of molecules that is successfully used for the treatment of certain types of cancer. Indeed, some of these inhibitors significantly delay the germination and growth of different filamentous fungi via inhibition of RpdA.Upcoming analyses of clinically approved and novel inhibitors will elucidate their therapeutic potential as new agents for the therapy of invasive fungal infections—an interesting aspect in light of the rising resistance of fungal pathogens to conventional therapies.

2010 ◽  
Vol 21 (2) ◽  
pp. 345-353 ◽  
Author(s):  
Martin Tribus ◽  
Ingo Bauer ◽  
Johannes Galehr ◽  
Gudrun Rieser ◽  
Patrick Trojer ◽  
...  

Acetylation of the N-terminal tails of core histones is an important regulatory mechanism in eukaryotic organisms. In filamentous fungi, little is known about the enzymes that modify histone tails. However, it is increasingly evident that histone deacetylases and histone acetyltransferases are critical factors for the regulation of genes involved in fungal pathogenicity, stress response, and production of secondary metabolites such as antibiotics or fungal toxins. Here, we show that depletion of RpdA, an RPD3-type histone deacetylase of Aspergillus nidulans, leads to a pronounced reduction of growth and sporulation of the fungus. We demonstrate that a so far unnoticed motif in the C terminus of fungal RpdA histone deacetylases is required for the catalytic activity of the enzyme and consequently is essential for the viability of A. nidulans. Moreover, we provide evidence that this motif is also crucial for the survival of other, if not all, filamentous fungi, including pathogens such as Aspergillus fumigatus or Cochliobolus carbonum. Thus, the extended C terminus of RpdA-type enzymes represents a promising target for fungal-specific histone deacetylase-inhibitors that may have potential as novel antifungal compounds with medical and agricultural applications.


Bionatura ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 1423-1426
Author(s):  
Bruna Rech ◽  
Fernando A. Gonzales-Zubiate

Ribonucleases (RNases) functions in the cell include precise maturation of non- coding RNAs and degradation of specific RNA transcripts that are no longer necessary. RNAses are present in the cell as single units or assembled as multimeric complexes; one of these complexes is the RNA exosome, a highly conserved complex essential for RNA processing and degradation. In the yeast Saccharomyces cerevisiae, the RNA exosome comprises eleven subunits, two with catalytic activity: Rrp6 and Rrp44, where the Rrp6 subunit is exclusively nuclear. Despite the RNA exosome has been intensively investigated since its discovery in 1997, only a few studies were accomplished concerning its nuclear transport. This review describes recent research about cellular localization and transport of this essential complex.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1164
Author(s):  
Óscar Martínez ◽  
Verónica Arjones ◽  
María Victoria González ◽  
Manuel Rey

The low induction rates of somatic embryogenesis are one of the main limitations in its routine application in the grapevine (Vitis vinifera L.). The use of an induction medium containing histone deacetylase inhibitors (trichostatin A and, mainly, sodium butyrate) resulted in an improvement of the embryogenic responses in grapevine (cv. Mencía) cotyledonary and recently germinated somatic embryos. The relative expression of several grapevine genes related to embryogenic competence or encoding histone deacetylase enzymes was studied in cotyledonary somatic embryos that were cultured in the presence of 0.5 mM sodium butyrate. The results showed a significant overexpression of the BBM and VvSERK2 genes after 24 h of culture, whereas the VvWOX2 gene was underexpressed less in treated versus untreated explants. The results suggest that the inhibitor may trigger a molecular response related to an increase in embryogenic competence and changes in the expression of associated genes. The treatment with sodium butyrate also produced significant variations in the expression of several histone deacetylase enzyme-encoding genes. These results may enhance the possibility of obtaining somatic embryos, reducing the seasonal constraints associated with the use of floral explants in grapevines.


Sign in / Sign up

Export Citation Format

Share Document