scholarly journals Handling Several Sugars at a Time: a Case Study of Xyloglucan Utilization by Ruminiclostridium cellulolyticum

mBio ◽  
2021 ◽  
Author(s):  
Clara Kampik ◽  
Nian Liu ◽  
Mohamed Mroueh ◽  
Nathalie Franche ◽  
Romain Borne ◽  
...  

The study of the decomposition of recalcitrant plant biomass is of great interest as the limiting step of terrestrial carbon cycle and to produce plant-derived valuable chemicals and energy. While extracellular cellulose degradation and catabolism have been studied in detail, few publications describe the complete metabolism of hemicelluloses and, to date, the published models are limited to the extracellular degradation and sequential entry of simple sugars.

2018 ◽  
Vol 13 (6) ◽  
pp. 064023 ◽  
Author(s):  
Benjamin Quesada ◽  
Almut Arneth ◽  
Eddy Robertson ◽  
Nathalie de Noblet-Ducoudré

2009 ◽  
Vol 23 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Shilong Piao ◽  
Philippe Ciais ◽  
Pierre Friedlingstein ◽  
Nathalie de Noblet-Ducoudré ◽  
Patricia Cadule ◽  
...  

2017 ◽  
Author(s):  
Marko Scholze ◽  
Michael Buchwitz ◽  
Wouter Dorigo ◽  
Luis Guanter ◽  
Shaun Quegan

Abstract. The global carbon cycle is an important component of the Earth system and it interacts with the hydrological, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification 5 of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by model-data fusion or data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation, and systematic and 10 well error-characterized observations relevant to the carbon cycle. Relevant observations for assimilation include various in-situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model 15 benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current 20 observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al. (2005) emphasising the rapid advance in relevant space-based observations.


2020 ◽  
Author(s):  
Lina Teckentrup ◽  
Martin G. De Kauwe ◽  
Andrew J. Pitman ◽  
Benjamin Smith

Abstract. The El Niño‐Southern Oscillation (ENSO) influences the global climate and the variability in the terrestrial carbon cycle on interannual timescales. Two different expressions of El Niño have recently been identified: (i) Central–Pacific (CP) and (ii) Eastern–Pacific (EP). Both types of El Nino are characterised by above average sea surface temperature anomalies in the respective locations. Studies exploring the impact of these expressions of El Niño on the carbon cycle have identified changes in the amplitude of the concentration of interannual atmospheric carbon dioxide (CO2) variability, as well as different lags in terrestrial CO2 release to the atmosphere following increased tropical near surface air temperature. We employ the dynamic global vegetation model LPJ–GUESS within a synthetic experimental framework to examine the sensitivity and potential long term impacts of these two expressions of El Niño on the terrestrial carbon cycle. We manipulated the occurrence of CP and EP events in two climate reanalysis datasets during the later half of the 20th and early 21st century by replacing all EP with CP and separately all CP with EP El Niño events. We found that the different expressions of El Niño affect interannual variability in the terrestrial carbon cycle. However, the effect on longer timescales was negligible for both climate reanalysis datasets. We conclude that capturing any future trends in the relative frequency of CP and EP El Niño events may not be critical for robust simulations of the terrestrial carbon cycle.


2012 ◽  
Vol 9 (10) ◽  
pp. 13439-13496 ◽  
Author(s):  
M. J. Smith ◽  
M. C. Vanderwel ◽  
V. Lyutsarev ◽  
S. Emmott ◽  
D. W. Purves

Abstract. The feedback between climate and the terrestrial carbon cycle will be a key determinant of the dynamics of the Earth System over the coming decades and centuries. However Earth System Model projections of the terrestrial carbon-balance vary widely over these timescales. This is largely due to differences in their carbon cycle models. A major goal in biogeosciences is therefore to improve understanding of the terrestrial carbon cycle to enable better constrained projections. Essential to achieving this goal will be assessing the empirical support for alternative models of component processes, identifying key uncertainties and inconsistencies, and ultimately identifying the models that are most consistent with empirical evidence. To begin meeting these requirements we data-constrained all parameters of all component processes within a global terrestrial carbon model. Our goals were to assess the climate dependencies obtained for different component processes when all parameters have been inferred from empirical data, assess whether these were consistent with current knowledge and understanding, assess the importance of different data sets and the model structure for inferring those dependencies, assess the predictive accuracy of the model, and to identify a methodology by which alternative component models could be compared within the same framework in future. Although formulated as differential equations describing carbon fluxes through plant and soil pools, the model was fitted assuming the carbon pools were in states of dynamic equilibrium (input rates equal output rates). Thus, the parameterised model is of the equilibrium terrestrial carbon cycle. All but 2 of the 12 component processes to the model were inferred to have strong climate dependencies although it was not possible to data-constrain all parameters indicating some potentially redundant details. Similar climate dependencies were obtained for most processes whether inferred individually from their corresponding data sets or using the full terrestrial carbon model and all available data sets, indicating a strong overall consistency in the information provided by different data sets under the assumed model formulation. A notable exception was plant mortality, in which qualitatively different climate dependencies were inferred depending on the model formulation and data sets used, highlighting this component as the major structural uncertainty in the model. All but two component processes predicted empirical data better than a null model in which no climate dependency was assumed. Equilibrium plant carbon was predicted especially well (explaining around 70% of the variation in the withheld evaluation data). We discuss the advantages of our approach in relation to advancing our understanding of the carbon cycle and enabling Earth System Models make better constrained projections.


Author(s):  
Jason Cope ◽  
Craig Hartsough ◽  
Peter Thornton ◽  
Henry Tufo ◽  
Nathan Wilhelmi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document