scholarly journals Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle

2018 ◽  
Vol 13 (6) ◽  
pp. 064023 ◽  
Author(s):  
Benjamin Quesada ◽  
Almut Arneth ◽  
Eddy Robertson ◽  
Nathalie de Noblet-Ducoudré
2008 ◽  
Vol 8 (1) ◽  
pp. 3843-3893 ◽  
Author(s):  
A. Ito ◽  
J. E. Penner ◽  
M. J. Prather ◽  
C. P. de Campos ◽  
R. A. Houghton ◽  
...  

Abstract. The effect of Land Use Change and Forestry (LUCF) on terrestrial carbon fluxes can be regarded as a carbon credit or debit under the UNFCCC, but scientific uncertainty in the estimates for LUCF remains large. Here, we assess the LUCF estimates by examining a variety of models of different types with different land cover change maps in the 1990s. Annual carbon pools and their changes are separated into different components for separate geographical regions, while annual land cover change areas and carbon fluxes are disaggregated into different LUCF activities and the biospheric response due to CO2 fertilization and climate change. We developed a consolidated estimate of the terrestrial carbon fluxes that combines book-keeping models with process-based biogeochemical models and inventory estimates and yields an estimate of the global terrestrial carbon flux that is within the uncertainty range developed in the IPCC 4th Assessment Report. We examined the USA and Brazil as case studies in order to assess the cause of differences from the UNFCCC reported carbon fluxes. Major differences in the litter and soil organic matter components are found for the USA. Differences in Brazil result from assumptions about the LUC for agricultural purposes. The effects of CO2 fertilization and climate change also vary significantly in Brazil. Our consolidated estimate shows that the small sink in Latin America is within the uncertainty range from inverse models, but that the sink in the USA is significantly smaller than the inverse models estimates. Because there are different sources of errors at the country level, there is no easy reconciliation of different estimates of carbon fluxes at the global level. Clearly, further work is required to develop data sets for historical land cover change areas and models of biogeochemical changes for an accurate representation of carbon uptake or emissions due to LUC.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Kirsten L. Findell ◽  
Alexis Berg ◽  
Pierre Gentine ◽  
John P. Krasting ◽  
Benjamin R. Lintner ◽  
...  

2017 ◽  
Vol 8 (2) ◽  
pp. 369-386 ◽  
Author(s):  
Reinhard Prestele ◽  
Almut Arneth ◽  
Alberte Bondeau ◽  
Nathalie de Noblet-Ducoudré ◽  
Thomas A. M. Pugh ◽  
...  

Abstract. Land-use and land-cover change (LULCC) represents one of the key drivers of global environmental change. However, the processes and drivers of anthropogenic land-use activity are still overly simplistically implemented in terrestrial biosphere models (TBMs). The published results of these models are used in major assessments of processes and impacts of global environmental change, such as the reports of the Intergovernmental Panel on Climate Change (IPCC). Fully coupled models of climate, land use and biogeochemical cycles to explore land use–climate interactions across spatial scales are currently not available. Instead, information on land use is provided as exogenous data from the land-use change modules of integrated assessment models (IAMs) to TBMs. In this article, we discuss, based on literature review and illustrative analysis of empirical and modeled LULCC data, three major challenges of this current LULCC representation and their implications for land use–climate interaction studies: (I) provision of consistent, harmonized, land-use time series spanning from historical reconstructions to future projections while accounting for uncertainties associated with different land-use modeling approaches, (II) accounting for sub-grid processes and bidirectional changes (gross changes) across spatial scales, and (III) the allocation strategy of independent land-use data at the grid cell level in TBMs. We discuss the factors that hamper the development of improved land-use representation, which sufficiently accounts for uncertainties in the land-use modeling process. We propose that LULCC data-provider and user communities should engage in the joint development and evaluation of enhanced LULCC time series, which account for the diversity of LULCC modeling and increasingly include empirically based information about sub-grid processes and land-use transition trajectories, to improve the representation of land use in TBMs. Moreover, we suggest concentrating on the development of integrated modeling frameworks that may provide further understanding of possible land–climate–society feedbacks.


2009 ◽  
Vol 97 (1-2) ◽  
pp. 123-144 ◽  
Author(s):  
Jelle G. Van Minnen ◽  
Kees Klein Goldewijk ◽  
Elke Stehfest ◽  
Bas Eickhout ◽  
Gerard van Drecht ◽  
...  

2008 ◽  
Vol 8 (12) ◽  
pp. 3291-3310 ◽  
Author(s):  
A. Ito ◽  
J. E. Penner ◽  
M. J. Prather ◽  
C. P. de Campos ◽  
R. A. Houghton ◽  
...  

Abstract. The effect of Land Use Change and Forestry (LUCF) on terrestrial carbon fluxes can be regarded as a carbon credit or debit under the UNFCCC, but scientific uncertainty in the estimates for LUCF remains large. Here, we assess the LUCF estimates by examining a variety of models of different types with different land cover change maps in the 1990s. Annual carbon pools and their changes are separated into different components for separate geographical regions, while annual land cover change areas and carbon fluxes are disaggregated into different LUCF activities and the biospheric response due to CO2 fertilization and climate change. We developed a consolidated estimate of the terrestrial carbon fluxes that combines book-keeping models with process-based biogeochemical models and inventory estimates and yields an estimate of the global terrestrial carbon flux that is within the uncertainty range developed in the IPCC 4th Assessment Report. We examined the USA and Brazil as case studies in order to assess the cause of differences from the UNFCCC reported carbon fluxes. Major differences in the litter and soil organic matter components are found for the USA. Differences in Brazil result from assumptions about the LUC for agricultural purposes. The effects of CO2 fertilization and climate change also vary significantly in Brazil. Our consolidated estimate shows that the small sink in Latin America is within the uncertainty range from inverse models, but that the sink in the USA is significantly smaller than the inverse models estimates. Because there are different sources of errors at the country level, there is no easy reconciliation of different estimates of carbon fluxes at the global level. Clearly, further work is required to develop data sets for historical land cover change areas and models of biogeochemical changes for an accurate representation of carbon uptake or emissions due to LUC.


2019 ◽  
Vol 11 (14) ◽  
pp. 1733 ◽  
Author(s):  
Ram L. Ray ◽  
Ademola Ibironke ◽  
Raghava Kommalapati ◽  
Ali Fares

Climate change and variability, soil types and soil characteristics, animal and microbial communities, and photosynthetic plants are the major components of the ecosystem that affect carbon sequestration potential of any location. This study used NASA’s Soil Moisture Active Passive (SMAP) Level 4 carbon products, gross primary productivity (GPP), and net ecosystem exchange (NEE) to quantify their spatial and temporal variabilities for selected terrestrial ecosystems across Texas during the 2015–2018 study period. These SMAP carbon products are available at 9 km spatial resolution on a daily basis. The ten selected SMAP grids are located in seven climate zones and dominated by five major land uses (developed, crop, forest, pasture, and shrub). Results showed CO2 emissions and uptake were affected by land-use and climatic conditions across Texas. It was also observed that climatic conditions had more impact on CO2 emissions and uptake than land-use in this state. On average, South Central Plains and East Central Texas Plains ecoregions of East Texas and Western Gulf Coastal Plain ecoregion of Upper Coast climate zones showed higher GPP flux and potential carbon emissions and uptake than other climate zones across the state, whereas shrubland on the Trans Pecos climate zone showed lower GPP flux and carbon emissions/uptake. Comparison of GPP and NEE distribution maps between 2015 and 2018 confirmed substantial changes in carbon emissions and uptake across Texas. These results suggest that SMAP carbon products can be used to study the terrestrial carbon cycle at regional to global scales. Overall, this study helps to understand the impacts of climate, land-use, and ecosystem dynamics on the terrestrial carbon cycle.


Sign in / Sign up

Export Citation Format

Share Document