scholarly journals p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair

2016 ◽  
Vol 36 (23) ◽  
pp. 2983-2994 ◽  
Author(s):  
George Fullbright ◽  
Halley B. Rycenga ◽  
Jordon D. Gruber ◽  
David T. Long

Interstrand cross-links (ICLs) are extremely toxic DNA lesions that create an impassable roadblock to DNA replication. When a replication fork collides with an ICL, it triggers a damage response that promotes multiple DNA processing events required to excise the cross-link from chromatin and resolve the stalled replication fork. One of the first steps in this process involves displacement of the CMG replicative helicase (comprised of Cdc45, MCM2-7, and GINS), which obstructs the underlying cross-link. Here we report that the p97/Cdc48/VCP segregase plays a critical role in ICL repair by unloading the CMG complex from chromatin. Eviction of the stalled helicase involves K48-linked polyubiquitylation of MCM7, p97-mediated extraction of CMG, and a largely degradation-independent mechanism of MCM7 deubiquitylation. Our results show that ICL repair and replication termination both utilize a similar mechanism to displace the CMG complex from chromatin. However, unlike termination, repair-mediated helicase unloading involves the tumor suppressor protein BRCA1, which acts upstream of MCM7 ubiquitylation and p97 recruitment. Together, these findings indicate that p97 plays a conserved role in dismantling the CMG helicase complex during different cellular events, but that distinct regulatory signals ultimately control when and where unloading takes place.

2018 ◽  
Author(s):  
◽  
Maryam Imani Nejad

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Abasic (Ap) sites are a common form of DNA lesion that occur endogenously 50,000-200,000 per cell per day in mammals. The alkylation of the guanine and adenine residues by the alkylating agents such as nitrogen mustards also induces the formation of Ap sites in genomic DNA. Our group recently showed that Ap sites can forge DNA-DNA interstrand cross-links in some sequences via reaction of the Ap aldehyde residue with the exocyclic amino groups of nucleobases, such as adenine and guanine, on the opposing strand of the DNA duplex. The earlier work in the group revealed that formation of these covalent bridges between two DNA strands is highly sequence- dependent. Although interstrand cross-links are one of the most deleterious types of cellular DNA damage, the availability of synthetic DNA duplexes containing chemically well-defined, site-specific interstrand cross-links has been proven to be a valuable tool in biological chemistry and medicine. We prepared and characterized a new Ap-derived interstrand cross-link. In another project, we use these remarkable cross-linking reactions for the covalent capture of disease-relevant single nucleotide polymorphism by using a protein nanopore technology. The complex mechanisms underlying cross-link repair in cells and limited availability of stable and defined cross-link are two major reasons why repair pathways of these lesions are not yet well understood. By preparing a variety of Ap-derived cross-links, we studied the role of a base excision repair DNA glycosylase, NEIL3 in unhooking the lesions.


2020 ◽  
Vol 34 (11-12) ◽  
pp. 832-846 ◽  
Author(s):  
Kimberly A. Rickman ◽  
Raymond J. Noonan ◽  
Francis P. Lach ◽  
Sunandini Sridhar ◽  
Anderson T. Wang ◽  
...  

2019 ◽  
Vol 39 (15) ◽  
Author(s):  
Karissa L. Paquin ◽  
Nicholas E. Mamrak ◽  
Jada L. Garzon ◽  
Juan A. Cantres-Velez ◽  
Paul A. Azzinaro ◽  
...  

ABSTRACT Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure and increased cancer risk. FA is caused by mutation of any 1 of 22 genes, and the FA proteins function cooperatively to repair DNA interstrand cross-links (ICLs). A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins, which occurs within chromatin. How FANCD2 and FANCI are anchored to chromatin remains unknown. In this study, we identify and characterize a FANCD2 histone-binding domain (HBD) and embedded methyl-lysine-binding domain (MBD) and demonstrate binding specificity for H4K20me2. Disruption of the HBD/MBD compromises FANCD2 chromatin binding and nuclear focus formation and its ability to promote error-free DNA interstrand cross-link repair, leading to increased error-prone repair and genome instability. Our study functionally describes the first FA protein chromatin reader domain and establishes an important link between this human genetic disease and chromatin plasticity.


1989 ◽  
Vol 9 (7) ◽  
pp. 2897-2905 ◽  
Author(s):  
J M Vos ◽  
P C Hanawalt

We have used integrative pSV2 plasmids to learn how DNA lesions affect nonhomologous recombination with human chromosomes. Enhanced stable transformation of fibrosarcoma cells with a selectable gene was observed after chemical modification of the plasmid DNA; thus, cells transfected with plasmid pSV2-gpt carrying photoadducts of the cross-linking agent 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) yielded four- to sevenfold-higher levels of Gpt+ transformants than were obtained with untreated plasmid. The enhancement due to HMT interstrand cross-links was at least as great as that due to the monoadducts. DNA hybridization analysis indicated that the enhanced transformation frequency resulted from an increased number of cells carrying integrated plasmid sequences rather than from a higher copy number per transformant. The enhancement was not seen with a plasmid missing the sequences flanking the minimal simian virus 40 gpt transcription unit. Cotransfection with untreated and HMT-treated plasmids suggested that the HMT-containing DNA interacted preferentially with some cellular factor that promoted chromosomal integration of the plasmid DNA. It is concluded that (i) interstrand cross-linking as well as intrastrand DNA adducts promote nonhomologous recombination in human chromatin and (ii) DNA sequences flanking the selectable genes are the targets for such recombinational events.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1559-1559 ◽  
Author(s):  
Michael J. Flynn ◽  
Patrick H. van Berkel ◽  
Francesca Zammarchi ◽  
Peter C. Tyrer ◽  
Ayse U. Akarca ◽  
...  

Abstract ADCT-301, currently in Phase I clinical trial, is an ADC composed of a recombinant human IgG1, HuMax®-TAC against human IL-2R-α (CD25) conjugated through a cleavable linker to a PBD dimer warhead with a drug-antibody ratio of 2.3. In vitro and ex vivo, ADCT-301 binds human CD25 with picomolar affinity. ADCT-301 has highly potent and targeted cytotoxicity against a panel of human lymphoma cell lines. On release, PBD dimers bind in the DNA minor groove and exert their cytotoxic action via the formation of DNA interstrand cross-links. In vivo, ADCT-301 demonstrates dose-dependent antitumor activity against subcutaneous and disseminated lymphoma models. For example, in the Karpas 299 xenograft model, 10/10 tumor-free survivors are observed following a single dose of 0.5 mg/kg, whereas Adcetris® gives only a modest delay in mean tumor growth at 0.5 mg/kg, despite this tumor expressing three-fold higher target antigen levels for this drug. The current study aimed to further define the mechanism of action of ADCT-301 and validate pharmacodynamic assays for clinical development. In Karpas 299 cells, evidence for internalization of ADCT-301 was shown by a reduction of CD25 molecules on the cell surface over the first three hours post-treatment followed by a return to pre-treatment levels by 16 hours. This is consistent with the documented rapid recycling of CD25 to the membrane after exposure to IL-2 (Hemar et al Journal of Cell Biology 1995). Furthermore, ADCT-301 on the cell surface declined by >70% over four hours. Following a two-hour exposure to ADCT-301, DNA interstrand cross-linking, measured using a modification of the single cell gel electrophoresis (comet) assay, reached a peak between 4 and 8 hours after which cross-links persisted up to 36 hours. In contrast, the peak of cross-link formation for an equimolar concentration of warhead was immediately following drug exposure and a non-targeted PBD-containing ADC did not produce crosslinks in these cells. A strong correlation (r = 0.97) between loss of viability and DNA cross-link formation provides support for this DNA damage being the critical initiating mechanism of cytotoxicity of ADCT-301. We have previously shown that PBD-induced DNA interstrand cross-links elicit a robust, but delayed γ-H2AX response (Wu et al Clinical Cancer Research 2013). In Karpas 299 cells phosphorylation of H2AX was observed 24 hours after a two-hour exposure to sub-GI50 concentrations of ADCT-301. In these cells continuous exposure to ADCT-301 resulted in a dose-dependent G2/M arrest, peaking at 48 hours, later than for the naked warhead. The peak of the early apoptosis marker annexin-V on the cell surface of Karpas 299 cells was observed between 60 and 72 hours and maximal loss of viability was at 96 hours. Significant bystander killing of CD25-negative human Burkitt's lymphoma-derived Ramos cells was demonstrated for ADCT-301 both by co-culture experiments with CD25-positive Karpas 299 cells, and by media transfer from Karpas 299 cells treated with ADCT-301. This is important as many lymphomas are heterogeneous in their CD25 expression profile (Strauchen et al American Journal of Pathology 1987). In SCID mice with Karpas 299 subcutaneous tumors a single dose of ADCT-301 was administered at 0.2 or 0.6 mg/kg. 24 hours after treatment, excised tumors showed a dose proportional increase in intensity of membrane and cytoplasmic staining by an anti-PBD payload antibody. Cross-linking was determined as 23% (0.2 mg/kg) vs 49% (0.6 mg/kg) (p ≤ 0.01) reduction in Tail Moment using the comet assay and dose-dependent γ-H2AX formation measured by immunohistochemistry was observed. No cross-linking was observed in matched lymphocyte samples. These data confirm the mechanism of cell killing of ADCT-301 and provide relevant pharmacodynamic assays for use in the clinical development of PBD-based ADCs. Disclosures Flynn: Spirogen/Medimmune: Employment. van Berkel:ADC Therapeutics: Employment, Equity Ownership, Patents & Royalties. Zammarchi:ADC Therapeutics: Employment. Tyrer:Spirogen/Medimmune: Employment. Williams:Spirogen/Medimmune: Employment. Howard:ADCT Spirogen/Medimmune: Employment, Equity Ownership, Patents & Royalties. Hartley:ADCT Spirogen/Medimmune: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2004 ◽  
Vol 24 (13) ◽  
pp. 5776-5787 ◽  
Author(s):  
Laura J. Niedernhofer ◽  
Hanny Odijk ◽  
Magda Budzowska ◽  
Ellen van Drunen ◽  
Alex Maas ◽  
...  

ABSTRACT Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (γ-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced γ-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, γ-H2AX foci were also induced in Ercc1 −/− cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1 −/− cells, MMC-induced γ-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1 −/− and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.


1997 ◽  
Vol 17 (12) ◽  
pp. 6822-6830 ◽  
Author(s):  
T Bessho ◽  
D Mu ◽  
A Sancar

Most DNA repair mechanisms rely on the redundant information inherent to the duplex to remove damaged nucleotides and replace them with normal ones, using the complementary strand as a template. Interstrand cross-links pose a unique challenge to the DNA repair machinery because both strands are damaged. To study the repair of interstrand cross-links by mammalian cells, we tested the activities of cell extracts of wild-type or excision repair-defective rodent cell lines and of purified human excision nuclease on a duplex with a site-specific cross-link. We found that in contrast to monoadducts, which are removed by dual incisions bracketing the lesion, the cross-link causes dual incisions, both 5' to the cross-link in one of the two strands. The net result is the generation of a 22- to 28-nucleotide-long gap immediately 5' to the cross-link. This gap may act as a recombinogenic signal to initiate cross-link removal.


2018 ◽  
Author(s):  
Justin L. Sparks ◽  
Alan O. Gao ◽  
Markus Räschle ◽  
Nicolai B. Larsen ◽  
Matthias Mann ◽  
...  

SummaryCovalent and non-covalent nucleoprotein complexes impede replication fork progression and thereby threaten genome integrity. UsingXenopus laevisegg extracts, we previously showed that when a replication fork encounters a covalent DNA-protein cross-link (DPC) on the leading strand template, the DPC is degraded to a short peptide, allowing its bypass by translesion synthesis polymerases. Strikingly, we show here that when DPC proteolysis is blocked, the replicative DNA helicase (CMG), which travels on the leading strand template, still bypasses the intact DPC. The DNA helicase RTEL1 facilitates bypass, apparently by translocating along the lagging strand template and generating single-stranded DNA downstream of the DPC. Remarkably, RTEL1 is required for efficient DPC proteolysis, suggesting that CMG bypass of a DPC normally precedes its proteolysis. RTEL1 also promotes fork progression past non-covalent protein-DNA complexes. Our data suggest a unified model for the replisome’s response to nucleoprotein barriers.


1989 ◽  
Vol 9 (7) ◽  
pp. 2897-2905
Author(s):  
J M Vos ◽  
P C Hanawalt

We have used integrative pSV2 plasmids to learn how DNA lesions affect nonhomologous recombination with human chromosomes. Enhanced stable transformation of fibrosarcoma cells with a selectable gene was observed after chemical modification of the plasmid DNA; thus, cells transfected with plasmid pSV2-gpt carrying photoadducts of the cross-linking agent 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) yielded four- to sevenfold-higher levels of Gpt+ transformants than were obtained with untreated plasmid. The enhancement due to HMT interstrand cross-links was at least as great as that due to the monoadducts. DNA hybridization analysis indicated that the enhanced transformation frequency resulted from an increased number of cells carrying integrated plasmid sequences rather than from a higher copy number per transformant. The enhancement was not seen with a plasmid missing the sequences flanking the minimal simian virus 40 gpt transcription unit. Cotransfection with untreated and HMT-treated plasmids suggested that the HMT-containing DNA interacted preferentially with some cellular factor that promoted chromosomal integration of the plasmid DNA. It is concluded that (i) interstrand cross-linking as well as intrastrand DNA adducts promote nonhomologous recombination in human chromatin and (ii) DNA sequences flanking the selectable genes are the targets for such recombinational events.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3196-3196
Author(s):  
Pan Zhang ◽  
Deepa Sridharan ◽  
Michael Acosta ◽  
Muriel Lambert

Abstract Abstract 3196 Poster Board III-133 The hereditary bone marrow failure disorder, Fanconi anemia (FA), is characterized by a markedly increased incidence of acute myelogenous leukemia, diverse congenital abnormalities and a defect in ability to repair DNA interstrand cross-links. We have previously shown that in FA cells there is a deficiency in the structural protein nonerythroid a spectrin (aSpII), which is involved in repair of DNA interstrand cross-links and binds to cross-linked DNA. aSpII co-localizes in nuclear foci with FANCA and the cross-link repair protein, XPF, after normal human cells are damaged with a DNA interstrand cross-linking agent. One of the FA proteins which is thought to play an important role in the repair of DNA interstrand cross-links is FANCD2, which is known to form nuclear foci after cross-link damage. The present study was undertaken in order to get a better understanding of the relationship between aSpII and FANCD2, whether they interact with each other during the DNA repair process and co-localize in damage-induced nuclear foci. Immunofluorescence microscopy was carried out to determine whether these proteins co-localized in nuclear foci after cells were damaged with a DNA interstrand cross-linking agent, 8-methylpsoralen plus UVA light (8-MOP) or mitomycin C (MMC). Time course measurements showed that FANCD2 foci were first visible at 2 hours after damage and increased up to 16 hours and were still present at 72 hours after damage. This time course of foci formation correlated with levels of monoubiquitination of FANCD2. Measurement of gH2AX foci formation showed that the time course of foci formation was similar to that of FANCD2 measured up to 72 hours post damage. In contrast, aSpII foci were first visible between 8-10 hours after damage. The number of these foci peaked at 16 hours and by 24 hours foci were no longer observed. Co-localization studies showed that there was little co-localization of the FANCD2 and aSpII foci over this time course. This indicates that these two proteins may be involved in different steps in the DNA interstrand cross-link repair process. Based on models that have been proposed for the role of FANCD2 in the repair of DNA interstrand cross-links, we propose that, after DNA damage, FANCD2 localizes at DNA replication forks stalled at sites of interstrand cross-links and aids in the assembly of proteins at this site. This is followed by localization of aSpII and XPF and other proteins involved in the initial incision steps in DNA interstrand cross-link repair where they play a role in the unhooking of the cross-link. FANCD2 is then involved in subsequent steps in the repair process, which involve homologous recombination. Thus two proteins, FANCD2 and aSpII, both of which have been shown to be critical for the DNA interstrand cross-link repair process may be involved in different or distinct steps in this repair process. Deficiencies in these proteins would impact on DNA interstrand cross-link repair and, as we have shown for aIISp, would have an adverse effect on the genomic stability of FA cells. . Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document