scholarly journals IMP2 Increases Mouse Skeletal Muscle Mass and Voluntary Activity by Enhancing Autocrine Insulin-Like Growth Factor 2 Production and Optimizing Muscle Metabolism

2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Laura Regué ◽  
Fei Ji ◽  
Daniel Flicker ◽  
Dana Kramer ◽  
William Pierce ◽  
...  

ABSTRACT Insulin-like growth factor 2 (IGF2) mRNA binding protein 2 (IMP2) was selectively deleted from adult mouse muscle; two phenotypes were observed: decreased accrual of skeletal muscle mass after weaning and reduced wheel-running activity but normal forced treadmill performance. Reduced wheel running occurs when mice are fed a high-fat diet but is normalized when mice consume standard chow. The two phenotypes are due to altered output from different IMP2 client mRNAs. The reduced fiber size of IMP2-deficient muscle is attributable, in part, to diminished autocrine Igf2 production; basal tyrosine phosphorylation of the insulin and IGF1 receptors is diminished, and Akt1 activation is selectively reduced. Gsk3α is disinhibited, and S536-phosphorylated ε subunit of eukaryotic initiation factor 2B [eIF2Bε(S536)] is hyperphosphorylated. Protein synthesis is reduced despite unaltered mTOR complex 1 activity. The diet-dependent reduction in voluntary exercise is likely due to altered muscle metabolism, as contractile function is normal. IMP2-deficient muscle exhibits reduced fatty acid oxidation, due to a reduced abundance of mRNA of peroxisome proliferator-activated receptor α (PPARα), an IMP2 client, and PPARα protein. IMP2-deficient muscle fibers treated with a mitochondrial uncoupler to increase electron flux, as occurs with exercise, exhibit reduced oxygen consumption from fatty acids, with higher oxygen consumption from glucose. The greater dependence on muscle glucose metabolism during increased oxygen demand may promote central fatigue and thereby diminish voluntary activity.

2021 ◽  
Vol 11 ◽  
Author(s):  
Nima Gharahdaghi ◽  
Bethan E. Phillips ◽  
Nathaniel J. Szewczyk ◽  
Ken Smith ◽  
Daniel J. Wilkinson ◽  
...  

Maintenance of skeletal muscle mass throughout the life course is key for the regulation of health, with physical activity a critical component of this, in part, due to its influence upon key hormones such as testosterone, estrogen, growth hormone (GH), and insulin-like growth factor (IGF). Despite the importance of these hormones for the regulation of skeletal muscle mass in response to different types of exercise, their interaction with the processes controlling muscle mass remain unclear. This review presents evidence on the importance of these hormones in the regulation of skeletal muscle mass and their responses, and involvement in muscle adaptation to resistance exercise. Highlighting the key role testosterone plays as a primary anabolic hormone in muscle adaptation following exercise training, through its interaction with anabolic signaling pathways and other hormones via the androgen receptor (AR), this review also describes the potential importance of fluctuations in other hormones such as GH and IGF-1 in concert with dietary amino acid availability; and the role of estrogen, under the influence of the menstrual cycle and menopause, being especially important in adaptive exercise responses in women. Finally, the downstream mechanisms by which these hormones impact regulation of muscle protein turnover (synthesis and breakdown), and thus muscle mass are discussed. Advances in our understanding of hormones that impact protein turnover throughout life offers great relevance, not just for athletes, but also for the general and clinical populations alike.


2017 ◽  
Vol 23 (8) ◽  
pp. 990-996 ◽  
Author(s):  
Bérengère Benoit ◽  
Emmanuelle Meugnier ◽  
Martina Castelli ◽  
Stéphanie Chanon ◽  
Aurélie Vieille-Marchiset ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1773 ◽  
Author(s):  
Syed Sayeed Ahmad ◽  
Khurshid Ahmad ◽  
Eun Ju Lee ◽  
Yong-Ho Lee ◽  
Inho Choi

Skeletal muscle is an essential tissue that attaches to bones and facilitates body movements. Insulin-like growth factor-1 (IGF-1) is a hormone found in blood that plays an important role in skeletal myogenesis and is importantly associated with muscle mass entity, strength development, and degeneration and increases the proliferative capacity of muscle satellite cells (MSCs). IGF-1R is an IGF-1 receptor with a transmembrane location that activates PI3K/Akt signaling and possesses tyrosine kinase activity, and its expression is significant in terms of myoblast proliferation and normal muscle mass maintenance. IGF-1 synthesis is elevated in MSCs of injured muscles and stimulates MSCs proliferation and myogenic differentiation. Mechanical loading also affects skeletal muscle production by IGF-1, and low IGF-1 levels are associated with low handgrip strength and poor physical performance. IGF-1 is potentially useful in the management of Duchenne muscular dystrophy, muscle atrophy, and promotes neurite development. This review highlights the role of IGF-1 in skeletal muscle, its importance during myogenesis, and its involvement in different disease conditions.


2006 ◽  
Vol 100 (6) ◽  
pp. 1778-1784 ◽  
Author(s):  
Elisabeth R. Barton

Insulin-like growth factor I (IGF-I) is a critical protein for skeletal muscle development and regeneration. Its ability to promote skeletal muscle hypertrophy has been demonstrated by several methods. Alternative splicing of the Igf-1 gene does not affect the mature IGF-I protein but does produce different E peptide extensions, which have been reported to modify the potency of IGF-I. Viral-mediated delivery of murine IGF-IA and IGF-IB into skeletal muscle of 2-wk-old and 6-mo-old mice was utilized to compare the effects of the isoforms on muscle mass. In young mice, tissue content of IGF-I protein was significantly higher in rAAV-treated muscles than control muscles at 1, 2, and 4 mo postinjection. Viral injection of IGF-IB produced two- to sevenfold more IGF-I than rAAVIGF-IA. Hypertrophy was observed 2 and 4 mo postinjection, where both rAAVIGF-IA and rAAVIGF-IB were equally effective in increasing muscle mass. These results suggest that there is a threshold of IGF-I production necessary to promote muscle hypertrophy in young growing animals regardless of isoform. In 6-mo-old animals, only rAAVIGF-IA produced significant increases in muscle size, even though increased IGF-I content was observed after injection of both isoforms. Therefore, the ability for IGF-IB to promote muscle hypertrophy is only effective in growing animals, suggesting that the bioavailability of this isoform or its receptor affinity diminishes with age.


2014 ◽  
Vol 306 (8) ◽  
pp. E965-E974 ◽  
Author(s):  
Becky K. Brisson ◽  
Janelle Spinazzola ◽  
SooHyun Park ◽  
Elisabeth R. Barton

Insulin-like growth factor I (IGF-I) is a protein that regulates and promotes growth in skeletal muscle. The IGF-I precursor polypeptide contains a COOH-terminal extension called the E-peptide. Alternative splicing in the rodent produces two isoforms, IA and IB, where the mature IGF-I in both isoforms is identical yet the E-peptides, EA and EB, share less than 50% homology. Recent in vitro studies show that the E-peptides can enhance IGF-I signaling, leading to increased myoblast cell proliferation and migration. To determine the significance of these actions in vivo and to evaluate if they are physiologically beneficial, EA and EB were expressed in murine skeletal muscle via viral vectors. The viral constructs ensured production of E-peptides without the influence of additional IGF-I through an inactivating mutation in mature IGF-I. E-peptide expression altered ERK1/2 and Akt phosphorylation and increased satellite cell proliferation. EB expression resulted in significant muscle hypertrophy that was IGF-I receptor dependent. However, the increased mass was associated with a loss of muscle strength. EA and EB have similar effects in skeletal muscle signaling and on satellite cells, but EB is more potent at increasing muscle mass. Although sustained EB expression may drive hypertrophy, there are significant physiological consequences for muscle.


Sign in / Sign up

Export Citation Format

Share Document