Treatment of Intrauterine Adhesions with Human Amnion Mesenchymal Stromal Cells (hAMSCs) on Promoting Endometrial Regeneration and Repair Via Notch Signaling Pathway Regulation

2020 ◽  
Author(s):  
Jie Yu ◽  
Wenwen Zhang ◽  
Jiayue Huang ◽  
Yating Gou ◽  
Congcong Sun ◽  
...  

Abstract Background: Human amniotic mesenchymal stem cells(hAMSCs) can repair and improve the damaged endometrium which its aplastic disorder is the main reason for intrauterine adhesions(IUAs).Methods: We conducted in vivo and in vitro experiments. In vivo experiments: 45 female Sprague-Dawley(SD) rats were involved and randomized equally into Sham group, IUA group, Estradiol(E2) group, hAMSCs group, and E2 + hAMSCs group. The effect of hAMSCs and E2 only or combined was evaluated by Hematoxylin-eosin(HE) and Masson staining. The expression of epithelial markers and key proteins of Notch signaling pathway by Immunohistochemistry. In vitro experiments: Firstly, the hAMSCs cells were taken and divided into control group and induced group in which hAMSCs were differentiated into endometrial epithelial cells in induced microenvironment, and extracted their RNA respectively. The expression of epithelial markers and Notch1 messenger RNA (mRNA) was detected by Real-time quantitative polymerase chain reaction(qRT-PCR). and the changes in expression position of Notch intracellular domain(NICD) and expression amount of target gene, hairy enhancer of split 1(Hes1) were detected by Immunofluorescence. Then, Activated and inhibited the Notch signaling pathway while induction, and detected mRNA expression of hAMSCs epithelial markers by quantitative real-time polymerase chainreaction (qRT-PCR) respectively and detected hAMSCs cell cycle by flow cytometric. Results:This study showed that hAMSCs alone or combined with E2 could promote endometrial repair, and Notch signaling pathway a great role in it. And otherwise, the activation or habitation of Notch signaling pathway determines whether hAMSCs could differentiate into endometrial epithelial cells or not.Conclusion: we concluded that activate the Notch signaling pathway promote the differentiation of hAMSCs into endometrial epithelial cells, and further treat IUAs.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xing Li ◽  
Dan Luo ◽  
Yu Hou ◽  
Yonghui Hou ◽  
Shudong Chen ◽  
...  

Spinal cord microcirculation involves functioning endothelial cells at the blood spinal cord barrier (BSCB) and maintains normal functioning of spinal cord neurons, axons, and glial cells. Protection of both the function and integrity of endothelial cells as well as the prevention of BSCB disruption may be a strong strategy for the treatment of spinal cord injury (SCI) cases. Sodium Tanshinone IIA silate (STS) is used for the treatment of coronary heart disease and improves microcirculation. Whether STS exhibits protective effects for SCI microcirculation is not yet clear. The purpose of this study is to investigate the protective effects of STS on oxygen-glucose deprivation- (OGD-) induced injury of spinal cord endothelial cells (SCMECs) in vitro and to explore effects on BSCB and neurovascular protection in vivo. SCMECs were treated with various concentrations of STS (1 μM, 3 μM, and 10 μM) for 24 h with or without OGD-induction. Cell viability, tube formation, migration, and expression of Notch signaling pathway components were evaluated. Histopathological evaluation (H&E), Nissl staining, BSCB permeability, and the expression levels of von Willebrand Factor (vWF), CD31, NeuN, and Notch signaling pathway components were analyzed. STS was found to improve SCMEC functions and reduce inflammatory mediators after OGD. STS also relieved histopathological damage, increased zonula occludens-1 (ZO-1), inhibited BSCB permeability, rescued microvessels, protected motor neuromas, and improved functional recovery in a SCI model. Moreover, we uncovered that the Notch signaling pathway plays an important role during these processes. These results indicated that STS protects microcirculation in SCI, which may be used as a therapeutic strategy for SCI in the future.


2019 ◽  
Vol 10 (17) ◽  
pp. 4114-4122 ◽  
Author(s):  
Guifang He ◽  
Tianlong Mu ◽  
Yali Yuan ◽  
Wenyan Yang ◽  
Yuan Zhang ◽  
...  

2021 ◽  
Author(s):  
Xin Ye ◽  
Mengyi Li ◽  
Wei Bian ◽  
Junwei Li ◽  
Ting Zhang ◽  
...  

Abstract Although the ependymal cells were reported to have the characteristics of neural stem cells (NSCs), the properties of CD133-ependymal cells have not been uncovered, in particular, it is largely unknown about the effect of Notch signaling pathway on the neurogenesis of CD133-positive ependymal cells. By using the transgenic mouse and primarily cultured ependymal cells, we found that the immunoreactivity for prominin-1/CD133 was exclusively localized in the subventricular zone (SVZ) and ependymal layer of ventricles, moreover, most CD133-positive ependymal cells were co-labeled with Nestin. In addition, RBP-J, a key nuclear effector of Notch signaling pathway, was highly active in CD133-positive ependymal cells. Our results demonstrated that CD133-positive ependymal cells can differentiate into the immature and mature neurons, in particular, the number of CD133-positive ependymal cells differentiating into the immature and mature neurons was significantly increased following the deficiency or interference of RBP-J in vivo or in vitro. By using real-time qPCR and Western blot, we found that RBP-J and Hes1 were down-regulated while Notch1 was up-regulated in the expression levels of mRNAs and proteins following the deficiency or interference of RBP-J in vivo or in vitro. These results demonstrated RBP-J deficiency promoted the proliferation and differentiation of CD133-positive ependymal cells. Therefore, we speculated that RBP-J could maintain CD133-positive ependymal cells in the characteristics of NSCs possibly by regulating Notch1/RBP-J/Hes1 pathway.


2016 ◽  
Vol 48 (5) ◽  
pp. 1868-1876 ◽  
Author(s):  
YUE GU ◽  
LINFENG XIAO ◽  
YANLIN MING ◽  
ZHIZHONG ZHENG ◽  
WENGANG LI

2017 ◽  
Vol 119 (3) ◽  
pp. 2520-2534 ◽  
Author(s):  
Hai-Juan Xiao ◽  
Qing Ji ◽  
Lin Yang ◽  
Ren-Ting Li ◽  
Cheng Zhang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yadong Fu ◽  
Zhun Xiao ◽  
Xiaoting Tian ◽  
Wei Liu ◽  
Zhou Xu ◽  
...  

Advanced liver fibrosis can lead to cirrhosis, resulting in an accelerated risk of hepatocellular carcinoma and liver failure. Fuzheng Huayu formula (FZHY) is a traditional Chinese medicine formula treated liver fibrosis in China approved by a Chinese State Food and Drug Administration (NO: Z20050546), composed of Salvia Miltiorrhiza bge., Prunus davidiana (Carr.) Franch., cultured Cordyceps sinensis (BerK.) Sacc. Mycelia, Schisandra chinensis (Turcz.) Baill., Pinus massoniana Lamb., and Gynostemma pentaphyllum (Thunb.) Makino. However, the main active substances and mechanism of FZHY are unclear. The aim of this study is to identify a novel anti-fibrotic compound, which consists of the main active ingredients of FZHY, and investigate its mechanism of pharmacological action. The main active ingredients of FZHY were investigated by quantitative analysis of FZHY extracts and FZHY-treated plasma and liver in rats. The anti-fibrotic composition of the main active ingredients was studied through uniform design in vivo, and its mechanism was evaluated in carbon tetrachloride (CCl4)- and bile duct ligation (BDL)-induced liver fibrosis models in rats and mice, and transforming growth factor beta 1-induced LX-2 cell activation model in vitro. A novel Chinese medicine, namely JY5 formula, consisting of salvianolic acid B, schisantherin A, and amygdalin, the main active ingredients of FZHY, significantly alleviated hepatic hydroxyproline content and collagen deposition in CCl4-and BDL-induced fibrotic liver in rats and mice. In addition, JY5 inhibited the activation of hepatic stellate cells (HSCs) by inactivating Notch signaling in vitro and in vivo. In this study, we found a novel JY5 formula, which exerted anti-hepatic fibrotic effects by inhibiting the Notch signaling pathway, consequently suppressing HSCs activation. These results provide an adequate scientific basis for clinical research and application of the JY5 formula, which may be a potential novel therapeutic candidate for liver fibrosis.


2020 ◽  
Author(s):  
Yadong Fu ◽  
Zhun Xiao ◽  
Xiaoting Tian ◽  
Wei Liu ◽  
Yonghong Hu ◽  
...  

Abstract Background: Advanced liver fibrosis can lead to cirrhosis, resulting in an accelerated risk of liver failure and hepatocellular carcinoma. It is necessary to develop an effective antifibrotic strategy. It has been reported that Fuzheng Huayu formula (FZHY) had a remarkable anti-hepatic fibrosis effect. Here, We obtain a new anti-fibrotic composition, which consists of the main active ingredients of FZHY formula and investigate its mechanism of pharmacological action.Methods: The main active ingredients of FZHY through the quantitative analysis in FZHY extracts and FZHY-treated plasma and liver in rats were investigated. The best anti-fibrotic composition of the main active ingredients was studied through the uniform design and validation experiments in vivo and its mechanism was evaluated in CCl4- and BDL-induced liver fibrosis models in rats and mice and TGF-β1-indued LX-2 cells activation model in vitro.Results:A novel composition, namely JY5 formula, which consisted of Salvianolic acid B, schisantherin A and amygdalin, the main active components of FZHY, could significantly alleviated hepatic hydroxyproline content and collagen deposition in CCl4- and BDL-induced fibrotic liver in rats and mice. Further studies showed that JY5 could inhibit the activation of hepatic stellate cells (HSCs) through inactivating Notch signaling in vivo and in vitro.Conclusions: We found a novel composition JY5 formula, which had an anti-hepatic fibrotic effect through inhibiting Notch signaling pathway, consequently suppressing HSCs activation. These results may provide some adequate scientific basis for the clinical research and application of JY5 formula, as a potential new therapeutic candidate for liver fibrosis.


Author(s):  
Chia-Hung Chou ◽  
Shee-Uan Chen ◽  
Chin-Der Chen ◽  
Chia-Tung Shun ◽  
Wen-Fen Wen ◽  
...  

Abstract Context A supraphysiological estradiol (E2) concentration after ovarian stimulation is known to result in lower embryo implantation rates in in vitro fertilization (IVF). Endometrial epithelial cells (EECs) apoptosis occurs after the stimulation with high E2 concentrations, and mitochondria play important roles in cell apoptosis. Objective To investigate the mitochondrial function in EECs after the stimulation with high E2 concentrations. Materials and Methods Human EECs were purified and cultured with different E2 concentrations (10-10, 10-9, 10-8, 10-7 M) in vitro, in which 10-7 M is supraphysiologically high. Eight-week-old female mouse endometrium was obtained 5.5 days after the injection of 1.25 IU or 20 IU equine chorionic gonadotropin (eCG), roughly during the embryo implantation window, to examine the in vivo effects of high E2 concentrations on mouse EECs. Results In vivo and in vitro experiments demonstrated decreased mitochondrial DNA contents and ATP formation after EECs were stimulated with supraphysiologically high E2 concentrations than those stimulated with a physiologic E2 concentration. Less prominent immunofluorescence mitochondrial staining, fewer mitochondria number under electron microscopy, lower JC-1 aggregate/monomer ratio, and greater reactive oxygen species (ROS) production were found after EECs were stimulated with supraphysiologically high E2 concentrations. The high E2-induced ROS production was reduced when EECs were pretreated with N-acetyl-cysteine (NAC) in vitro, but remained unchanged after the pretreatment with coenzyme Q10. Conclusion High E2 concentrations increase extra-mitochondrial ROS production in EECs and subsequently result in mitochondrial dysfunction.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1439
Author(s):  
Hyeon-Gu Kang ◽  
Won-Jin Kim ◽  
Myung-Giun Noh ◽  
Kyung-Hee Chun ◽  
Seok-Jun Kim

Spondin-2 (SPON2) is involved in cancer progression and metastasis of many tumors; however, its role and underlying mechanism in gastric cancer are still obscure. In this study, we investigated the role of SPON2 and related signaling pathway in gastric cancer progression and metastasis. SPON2 expression levels were found to be upregulated in gastric cancer cell lines and patient tissues compared to normal gastric epithelial cells and normal controls. Furthermore, SPON2 silencing was observed to decrease cell proliferation and motility and reduce tumor growth in xenograft mice. Conversely, SPON2 overexpression was found to increase cell proliferation and motility. Subsequently, we focused on regulatory mechanism of SPON2 in gastric cancer. cDNA microarray and in vitro study showed that Notch signaling is significantly correlated to SPON2 expression. Therefore, we confirmed how Notch signaling pathway regulate SPON2 expression using Notch signaling-related transcription factor interaction and reporter gene assay. Additionally, activation of Notch signaling was observed to increase cell proliferation, migration, and invasion through SPON2 expression. Our study demonstrated that Notch signaling-mediated SPON2 upregulation is associated with aggressive progression of gastric cancer. In conclusion, we suggest upregulated SPON2 via Notch signaling as a potential target gene to inhibit gastric cancer progression.


Sign in / Sign up

Export Citation Format

Share Document