scholarly journals RAD6 Promotes Homologous Recombination Repair by Activating the Autophagy-Mediated Degradation of Heterochromatin Protein HP1

2014 ◽  
Vol 35 (2) ◽  
pp. 406-416 ◽  
Author(s):  
Su Chen ◽  
Chen Wang ◽  
Luxi Sun ◽  
Da-Liang Wang ◽  
Lu Chen ◽  
...  

Efficient DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. Unrepaired or misrepaired DSBs cause chromosomal rearrangements that can result in severe consequences, such as tumorigenesis. RAD6 is an E2 ubiquitin-conjugating enzyme that plays a pivotal role in repairing UV-induced DNA damage. Here, we present evidence that RAD6 is also required for DNA DSB repair via homologous recombination (HR) by specifically regulating the degradation of heterochromatin protein 1α (HP1α). Our study indicates that RAD6 physically interacts with HP1α and ubiquitinates HP1α at residue K154, thereby promoting HP1α degradation through the autophagy pathway and eventually leading to an open chromatin structure that facilitates efficient HR DSB repair. Furthermore, bioinformatics studies have indicated that the expression of RAD6 and HP1α exhibits an inverse relationship and correlates with the survival rate of patients.

Science ◽  
2010 ◽  
Vol 329 (5997) ◽  
pp. 1348-1353 ◽  
Author(s):  
Abderrahmane Kaidi ◽  
Brian T. Weinert ◽  
Chunaram Choudhary ◽  
Stephen P. Jackson

SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired the accumulation of replication protein A and single-stranded DNA at DNA damage sites, reduced rates of homologous recombination, and sensitized cells to DSB-inducing agents. We identified the DSB resection protein CtIP [C-terminal binding protein (CtBP) interacting protein] as a SIRT6 interaction partner and showed that SIRT6-dependent CtIP deacetylation promotes resection. A nonacetylatable CtIP mutant alleviated the effect of SIRT6 depletion on resection, thus identifying CtIP as a key substrate by which SIRT6 facilitates DSB processing and homologous recombination. These findings further clarify how SIRT6 promotes genome stability.


2020 ◽  
Author(s):  
Elif Asik ◽  
Nimrat Chatterjee ◽  
Alison A. Bertuch

ABSTRACTShwachman-Diamond syndrome (SDS) and Diamond-Blackfan anemia (DBA) are ribosomopathies characterized by impaired hematopoiesis and cancer predisposition. The mechanisms underlying cancer predisposition in these disorders are not well understood. We found that LCLs derived from patients with SDS or DBA had a prolonged DNA damage response and hypersensitivity to ionizing radiation, suggesting impaired DNA double strand break (DSB) repair. Consistent with this, depletion of SBDS and RPS19, the most common etiologic factors in SDS and DBA, respectively, resulted in reduced homologous recombination (HR) in HCT116 and U2OS cells. Surprisingly, depletion of EFL1, which functions with SBDS in ribosome biogenesis, did not impair HR and depletion of eIF6, which restores ribosome joining in SBDS-depleted cells, did not rescue the HR defect associated with SBDS depletion. Instead, we found SBDS and RPS19 recruitment to sites of DSBs suggesting that SBDS and RPS19 have more proximate roles in regulating HR, independent of their ribosomal functions. We propose that reduced HR shifts DSB repair toward error-prone NHEJ and this may contribute to oncogenesis in SDS and DBA. Additionally, we found SBDS and RPS19 depleted cells were hypersensitive to PARP inhibition, potentially uncovering a therapeutic target for SDS- and DBA-associated malignancies.


2018 ◽  
Author(s):  
Alexander J. Garvin ◽  
Alexandra K. Walker ◽  
Ruth M. Densham ◽  
Anoop Singh Chauhan ◽  
Helen R. Stone ◽  
...  

AbstractSUMOylation in the DNA double-strand break (DSB) response regulates recruitment, activity and clearance of repair factors. However, our understanding of a role for deSUMOylation in this process is limited. Here we identify different mechanistic roles for deSUMOylation in homologous recombination (HR) and non-homologous enjoining (NHEJ) through the investigation of the deSUMOylase SENP2. We find regulated deSUMOylation of MDC1 prevents excessive SUMOylation and its RNF4-VCP mediated clearance from DSBs, thereby promoting NHEJ. In contrast we show HR is differentially sensitive to SUMO availability and SENP2 activity is needed to provide SUMO. SENP2 is amplified as part of the chromosome 3q amplification in many cancers. Increased SENP2 expression prolongs MDC1 foci retention and increases NHEJ and radioresistance. Collectively our data reveal that deSUMOylation differentially primes cells for responding to DSBs and demonstrates the ability of SENP2 to tune DSB repair responses.


2022 ◽  
Author(s):  
Tej Pandita ◽  
Vijay Kumari Charaka ◽  
Sharmistha Chakraborty ◽  
Chi-Lin Tsai ◽  
Xiaoyan Wang ◽  
...  

Efficient DNA double strand break (DSB) repair by homologous recombination (HR), as orchestrated by histone and non-histone proteins, is critical to genome stability, replication, transcription, and cancer avoidance. Here we report that Heterochromatin Protein1 beta (HP1β) acts as a key component of the HR DNA resection step by regulating BRCA1 enrichment at DNA damage sites, a function largely dependent on the HP1β chromo shadow domain (CSD). HP1β itself is enriched at DSBs within gene-rich regions through a CSD interaction with Chromatin Assembly Factor 1 (CAF1) and HP1β depletion impairs subsequent BRCA1 enrichment. An added interaction of the HP1β CSD with the Polycomb Repressor Complex 1 ubiquitinase component RING1A facilitates BRCA1 recruitment by increasing H2A lysine 118-119 ubiquitination, a marker for BRCA1 recruitment. Our findings reveal that HP1β interactions, mediated through its CSD with RING1A, promote H2A ubiquitination and facilitate BRCA1 recruitment at DNA damage sites, a critical step in DSB repair by the HR pathway. These collective results unveil how HP1β is recruited to DSBs in gene-rich regions and how HP1β subsequently promotes BRCA1 recruitment to further HR DNA damage repair by stimulating CtIP-dependent resection.


2018 ◽  
Author(s):  
G. Kollarovic ◽  
C. E. Topping ◽  
E. P. Shaw ◽  
A. L. Chambers

ABSTRACTEfficient double-strand break repair in eukaryotes requires manipulation of chromatin structure. ATP-dependent chromatin remodelling enzymes can facilitate different DNA repair pathways, during different stages of the cell cycle and in a range of chromatin environments. The contribution of remodelling factors to break repair within heterochromatin during G2 is unclear.The human HELLS protein is a Snf2-like chromatin remodeller family member and is mutated or misregulated in several cancers and some cases of ICF syndrome. HELLS has been implicated in the DNA damage response, but its mechanistic function in repair is not well understood. We find that HELLS facilitates homologous recombination at two-ended breaks within heterochromatic regions during G2. HELLS enables end-resection and accumulation of CtIP at IR-induced foci. We identify an interaction between HELLS and CtIP and establish that the ATPase domain of HELLS is required to promote DSB repair. This function of HELLS in maintenance of genome stability is likely to contribute to its role in cancer biology and demonstrates that different chromatin remodelling activities are required for efficient repair in specific genomic contexts.


2008 ◽  
Vol 28 (7) ◽  
pp. 2295-2303 ◽  
Author(s):  
Lura B. Caddle ◽  
Muneer G. Hasham ◽  
William H. Schott ◽  
Bobbi-Jo Shirley ◽  
Kevin D. Mills

ABSTRACT Primary immunodeficiencies are rare but serious diseases with diverse genetic causes. Accumulating evidence suggests that defects in DNA double-strand break (DSB) repair can underlie many of these syndromes. In this context, the nonhomologous end joining pathway of DSB repair is absolutely required for lymphoid development, but possible roles for the homologous recombination (HR) pathway have remained more controversial. While recent evidence suggests that HR may indeed be important to suppress lymphoid transformation, the specific relationship of HR to normal lymphocyte development remains unclear. We have investigated roles of the X-ray cross-complementing 2 (Xrcc2) HR gene in lymphocyte development. We show that HR is critical for normal B-cell development, with Xrcc2 nullizygosity leading to p53-dependent early S-phase arrest. In the absence of p53 (encoded by Trp53), Xrcc2-null B cells can fully develop but show high rates of chromosome and chromatid fragmentation. We present a molecular model wherein Xrcc2 is important to preserve or restore replication forks during rapid clonal expansion of developing lymphocytes. Our findings demonstrate a key role for HR in lymphoid development and suggest that Xrcc2 defects could underlie some human primary immunodeficiencies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amira Elbakry ◽  
Markus Löbrich

Homologous recombination (HR) is an essential pathway for DNA double-strand break (DSB) repair, which can proceed through various subpathways that have distinct elements and genetic outcomes. In this mini-review, we highlight the main features known about HR subpathways operating at DSBs in human cells and the factors regulating subpathway choice. We examine new developments that provide alternative models of subpathway usage in different cell types revise the nature of HR intermediates involved and reassess the frequency of repair outcomes. We discuss the impact of expanding our understanding of HR subpathways and how it can be clinically exploited.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0122582 ◽  
Author(s):  
Nakako Izumi Nakajima ◽  
Yoshihiko Hagiwara ◽  
Takahiro Oike ◽  
Ryuichi Okayasu ◽  
Takeshi Murakami ◽  
...  

2017 ◽  
Vol 3 (5) ◽  
pp. e1601898 ◽  
Author(s):  
Khalid Hilmi ◽  
Maïka Jangal ◽  
Maud Marques ◽  
Tiejun Zhao ◽  
Amine Saad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document