scholarly journals Translation of cIAP2 mRNA Is Mediated Exclusively by a Stress-Modulated Ribosome Shunt

2008 ◽  
Vol 28 (6) ◽  
pp. 2011-2022 ◽  
Author(s):  
Kyle W. Sherrill ◽  
Richard E. Lloyd

ABSTRACT During cellular stress, translation persists or increases for a number of stress-responsive proteins, including cellular inhibitor of apoptosis 2 (cIAP2). The cIAP2 transcript includes a very long (2.78-kb) 5′ untranslated region (UTR) with an unusually high number of upstream AUGs (uAUGs), i.e., 64, and a stable predicted secondary structure (ΔG ≅ −620 kcal/mol) that should completely block conventional scanning-dependent translation initiation. This region did not facilitate internal ribosome entry in vitro or when RNA reporter transcripts were transfected into cells. However, several structural features within the cIAP2 5′ UTR were observed to be nearly identical to those required for ribosome shunting in cauliflower mosaic virus RNA and are well conserved in cIAP2 orthologs. Selective mutation revealed that the cIAP2 mRNA mediates translation exclusively via ribosome shunting that bypasses 62 uAUGs. In addition, shunting efficiency was altered by stress and was greatly facilitated by a conserved RNA folding domain (1,470 to 1,877 nucleotides upstream) in a region not scanned by shunting ribosomes. This arrangement suggests that regulation of cIAP2 shunting may involve recruitment of RNA binding proteins to modulate the efficiency of translation initiation.

2019 ◽  
Vol 11 (10) ◽  
pp. 845-859 ◽  
Author(s):  
Alisha N Jones ◽  
Michael Sattler

Abstract Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.


2013 ◽  
Vol 449 (3) ◽  
pp. 719-728 ◽  
Author(s):  
Lydia Prongidi-Fix ◽  
Laure Schaeffer ◽  
Angelita Simonetti ◽  
Sharief Barends ◽  
Jean-François Ménétret ◽  
...  

Detailed knowledge of the structure of the ribosomal particles during their assembly on mRNA is a prerequisite for understanding the intricate translation initiation process. In vitro preparation of eukaryotic translation initiation complexes is limited by the rather tricky assembly from individually purified ribosomal subunits, initiation factors and initiator tRNA. In order to directly isolate functional complexes from living cells, methods based on affinity tags have been developed which, however, often suffer from non-specific binding of proteins and/or RNAs. In the present study we present a novel method designed for the purification of high-quality ribosome/mRNA particles assembled in RRL (rabbit reticulocyte lysate). Chimaerical mRNA–DNA molecules, consisting of the full-length mRNA ligated to a biotinylated desoxy-oligonucleotide, are immobilized on streptavidin-coated beads and incubated with RRL to form initiation complexes. After a washing step, the complexes are eluted by specific DNase I digestion of the DNA moiety of the chimaera, releasing initiation complexes in native conditions. Using this simple and robust purification setup, 80S particles properly programmed with full-length histone H4 mRNA were isolated with the expected ribosome/mRNA molar ratio of close to 1. We show that by using this novel approach purified ribosomal particles can be obtained that are suitable for biochemical and structural studies, in particular single-particle cryo-EM (cryo-electron microscopy). This purification method thus is a versatile tool for the isolation of fully functional RNA-binding proteins and macromolecular RNPs.


2018 ◽  
Author(s):  
Marina Volegova ◽  
Jamie H.D. Cate

AbstractImproper regulation of translation initiation, a vital check-point of protein synthesis in the cell, has been linked to a number of cancers. Overexpression of protein subunits of eukaryotic translation initiation factor 3 (eIF3) has been associated with increased translation of mRNAs involved in cell proliferation. In addition to playing a major role in general translation initiation by serving as a scaffold for the assembly of translation initiation complexes, eIF3 regulates translation of specific cellular mRNAs and viral RNAs. Mutations in the N-terminal Helix-Loop-Helix (HLH) RNA-binding motif of the EIF3A subunit in eIF3 interfere with Hepatitis C Virus Internal Ribosome Entry Site (IRES) mediated translation initiationin vitro. Here we show that the EIF3A HLH motif controls translation of a small set of cellular transcripts enriched in oncogenic mRNAs, includingMYC. We also demonstrate that the HLH motif of EIF3A acts specifically on the 5’-UTR ofMYCmRNA and modulates the function of EIF4A1 on select transcripts during translation initiation. In Ramos lymphoma cell lines, which are dependent on MYC overexpression, mutations in the HLH motif greatly reduce MYC expression, impede proliferation and sensitize cells to anti-cancer compounds. These results reveal the potential of the EIF3A HLH motif in eIF3 as a promising chemotherapeutic target.SummaryThe Helix Loop Helix motif of EIF3A controls translation of a small set of oncogenic cellular transcripts, includingMYC, and modulates the function of translation initiation factor EIF4A1 during translation initiation on select mRNAs.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Almudena Pacheco ◽  
Encarnacion Martinez-Salas

Translation initiation is a highly regulated process that exerts a strong influence on the posttranscriptional control of gene expression. Two alternative mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism operating in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism, first discovered in picornaviruses. IRES elements are highly structured RNA sequences that, in most instances, require specific proteins for recruitment of the translation machinery. Some of these proteins are eukaryotic initiation factors. In addition, RNA-binding proteins (RBPs) play a key role in internal initiation control. RBPs are pivotal regulators of gene expression in response to numerous stresses, including virus infection. This review discusses recent advances on riboproteomic approaches to identify IRES transacting factors (ITAFs) and the relationship between RNA-protein interaction and IRES activity, highlighting the most relevant features on picornavirus and hepatitis C virus IRESs.


2002 ◽  
Vol 22 (20) ◽  
pp. 7242-7257 ◽  
Author(s):  
Lubov T. Timchenko ◽  
Polina Iakova ◽  
Alana L. Welm ◽  
Z.-J. Cai ◽  
Nikolai A. Timchenko

ABSTRACT We previously identified an RNA binding protein, CUGBP1, which binds to GCN repeats located within the 5′ region of C/EBPβ mRNAs and regulates translation of C/EBPβ isoforms. To further investigate the role of RNA binding proteins in the posttranscriptional control of C/EBP proteins, we purified additional RNA binding proteins that interact with GC-rich RNAs and that may regulate RNA processing. In HeLa cells, the majority of GC-rich RNA binding proteins are associated with endogenous RNA transcripts. The separation of these proteins from endogenous RNA identified several proteins in addition to CUGBP1 that specifically interact with the GC-rich 5′ region of C/EBPβ mRNA. One of these proteins was purified to homogeneity and was identified as calreticulin (CRT). CRT is a multifunctional protein involved in several biological processes, including interaction with and regulation of rubella virus RNA processing. Our data demonstrate that both CUGBP1 and CRT interact with GCU repeats within myotonin protein kinase and with GCN repeats within C/EBPα and C/EBPβ mRNAs. GCN repeats within these mRNAs form stable SL structures. The interaction of CRT with SL structures of C/EBPβ and C/EBPα mRNAs leads to inhibition of translation of C/EBP proteins in vitro and in vivo. Deletions or mutations abolishing the formation of SL structures within C/EBPα and C/EBPβ mRNAs lead to a failure of CRT to inhibit translation of C/EBP proteins. CRT-dependent inhibition of C/EBPα is sufficient to block the growth-inhibitory activity of C/EBPα. This finding further defines the molecular mechanism for posttranscriptional regulation of the C/EBPα and C/EBPβ proteins.


2019 ◽  
Author(s):  
Marion Alriquet ◽  
Adrían Martínez-Limón ◽  
Gerd Hanspach ◽  
Martin Hengesbach ◽  
Gian G. Tartaglia ◽  
...  

ABSTRACTTransient sequestration of proteins and RNA is an essential principle of cellular reaction to stress. Compared to polypeptides, less is known about the role of RNA released from polysomes during acute proteostasis stress. Using quantitative mass spectrometry, we identified a set of proteins assembled by free RNA in the heat-shocked mammalian cytosol. RNA-associated proteins displayed higher disorder and larger size, which supports the role of multivalent interactions during the initial phase of the RNA granule formation. Structural features of the free RNA interactors defined them as a subset of RNA-binding proteins. The interactome contained preferentially the active form of eIF2α. The interaction between assembled proteins in vivo required RNA. The reconstitution of the association process in vitro indicated to the multimolecular basis for the increased binding to RNA upon heat shock in the cytosol. Our results reveal how free RNA can participate in reorganization of cellular functions during proteostasis stress.


1991 ◽  
Vol 11 (2) ◽  
pp. 894-905
Author(s):  
R A Voelker ◽  
W Gibson ◽  
J P Graves ◽  
J F Sterling ◽  
M T Eisenberg

The nucleotide sequence of the Drosophila melanogaster suppressor of sable [su(s)] gene has been determined. Comparison of genomic and cDNA sequences indicates that an approximately 7,860-nucleotide primary transcript is processed into an approximately 5-kb message, expressed during all stages of the life cycle, that contains an open reading frame capable of encoding a 1,322-amino-acid protein of approximately 150 kDa. The putative protein contains an RNA recognition motif-like region and a highly charged arginine-, lysine-, serine-, aspartic or glutamic acid-rich region that is similar to a region contained in several RNA-processing proteins. In vitro translation of in vitro-transcribed RNA from a complete cDNA yields a product whose size agrees with the size predicted by the open reading frame. Antisera against su(s) fusion proteins recognize the in vitro-translated protein and detect a protein of identical size in the nuclear fractions from tissue culture cells and embryos. The protein is also present in smaller amounts in cytoplasmic fractions of embryos. That the su(s) protein has regions similar in structure to RNA-processing protein is consistent with its known role in affecting the transcript levels of those alleles that it suppresses.


2003 ◽  
Vol 23 (19) ◽  
pp. 7055-7067 ◽  
Author(s):  
Shelly A. Waggoner ◽  
Stephen A. Liebhaber

ABSTRACT Posttranscriptional controls in higher eukaryotes are central to cell differentiation and developmental programs. These controls reflect sequence-specific interactions of mRNAs with one or more RNA binding proteins. The α-globin poly(C) binding proteins (αCPs) comprise a highly abundant subset of K homology (KH) domain RNA binding proteins and have a characteristic preference for binding single-stranded C-rich motifs. αCPs have been implicated in translation control and stabilization of multiple cellular and viral mRNAs. To explore the full contribution of αCPs to cell function, we have identified a set of mRNAs that associate in vivo with the major αCP2 isoforms. One hundred sixty mRNA species were consistently identified in three independent analyses of αCP2-RNP complexes immunopurified from a human hematopoietic cell line (K562). These mRNAs could be grouped into subsets encoding cytoskeletal components, transcription factors, proto-oncogenes, and cell signaling factors. Two mRNAs were linked to ceroid lipofuscinosis, indicating a potential role for αCP2 in this infantile neurodegenerative disease. Surprisingly, αCP2 mRNA itself was represented in αCP2-RNP complexes, suggesting autoregulatory control of αCP2 expression. In vitro analyses of representative target mRNAs confirmed direct binding of αCP2 within their 3′ untranslated regions. These data expand the list of mRNAs that associate with αCP2 in vivo and establish a foundation for modeling its role in coordinating pathways of posttranscriptional gene regulation.


Sign in / Sign up

Export Citation Format

Share Document