scholarly journals Drosophila UTX Is a Histone H3 Lys27 Demethylase That Colocalizes with the Elongating Form of RNA Polymerase II

2007 ◽  
Vol 28 (3) ◽  
pp. 1041-1046 ◽  
Author(s):  
Edwin R. Smith ◽  
Min Gyu Lee ◽  
Benjamin Winter ◽  
Nathan M. Droz ◽  
Joel C. Eissenberg ◽  
...  

ABSTRACT Histone H3 methylation at Lys27 (H3K27 methylation) is a hallmark of silent chromatin, while H3K4 methylation is associated with active chromatin regions. Here we report that a Drosophila JmjC family member, dUTX, specifically demethylates di- and trimethylated but not monomethylated H3K27. dUTX localization on chromatin correlates with the elongating form of RNA polymerase II (Pol II), and dUTX can associate with Pol II. Furthermore, heat shock induction results in the recruitment of dUTX to the hsp70 gene, like that of several other Pol II elongation factors. Our data indicate that dUTX is intimately associated with actively transcribed genes and may provide a paradigm for how H3K27 demethylation is required for the activation of preinitiated Pol II on transcriptionally poised genes.

2006 ◽  
Vol 26 (8) ◽  
pp. 3135-3148 ◽  
Author(s):  
Hongfang Qiu ◽  
Cuihua Hu ◽  
Chi-Ming Wong ◽  
Alan G. Hinnebusch

ABSTRACT The Paf1 complex (Paf1C) interacts with RNA polymerase II (Pol II) and promotes histone methylation of transcribed coding sequences, but the mechanism of Paf1C recruitment is unknown. We show that Paf1C is not recruited directly by the activator Gcn4p but is dependent on preinitiation complex assembly and Ser5 carboxy-terminal domain phosphorylation for optimal association with ARG1 coding sequences. Importantly, Spt4p is required for Paf1C occupancy at ARG1 (and other genes) and for Paf1C association with Ser5-phosphorylated Pol II in cell extracts, whereas Spt4p-Pol II association is independent of Paf1C. Since spt4Δ does not reduce levels of Pol II at ARG1, Ser5 phosphorylation, or Paf1C expression, it appears that Spt4p (or its partner in DSIF, Spt5p) provides a platform on Pol II for recruiting Paf1C following Ser5 phosphorylation and promoter clearance. spt4Δ reduces trimethylation of Lys4 on histone H3, demonstrating a new role for yeast DSIF in promoting a Paf1C-dependent function in elongation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 154-154 ◽  
Author(s):  
Zachary C. Murphy ◽  
Tyler A Couch ◽  
Jacquelyn Lillis ◽  
Michael Getman ◽  
Kimberly Lezon-Geyda ◽  
...  

Maturation of erythroid progenitors is associated with significant changes in gene expression in the context of a nucleus that dramatically decreases in size in preparation for enucleation, and is regulated by the coordinated action of transcriptional regulators and epigenetic modifiers. In eukaryotes, all DNA is bound by histone proteins into chromatin. Posttranslational modifications of the N-terminal "tails" of these proteins are key regulators of chromatin structure and gene expression. We hypothesized that terminal erythroid maturation is associated with changes in the abundance of specific histone posttranslational modifications. To address this hypothesis, we utilized mass spectrometry to perform an unbiased assessment of the abundance histone post translational modifications in maturing erythroblasts. We cultured peripheral blood CD34+ hematopoietic stem and progenitor cells (HSPCs) down the erythroid lineage using a semi-synchronous culture system (as outlined in Gautier et al. Cell Reports 2016), and sent cells for mass spectrometry on day 7 of erythroid maturation, when the cells are predominately basophilic erythroblasts, and on day 12 of erythroid maturation, when they are predominately poly- and ortho- chromatic erythroblasts. The maturation stage of the cells was confirmed by both cytospins and imaging flow cytometric analyses. Two independent replicates were performed and key results confirmed by western blotting. Terminal erythroid maturation was associated with a dramatic decline in the abundance of multiple histone marks associated with active transcription elongation, including Histone H3 lysine 36 di- and tri-methylation (H3K36me2, H3K36me3), and Histone H3 Lysine 79 di-methylation (H3K79me2). Surprisingly, this was not accompanied by an increase in the abundance of repressive heterochromatin marks (H3K27me3, H3K9me3, and H4K20me3) or a global decline in histone acetylation. Histone H4 lysine 16 acetylation (H4K16Ac), associated with RNA polymerase II pause release (Kapoor-Vazirani MCB 2011) significantly declined, but multiple acetylation marks including H3K36Ac and H3K23Ac increased in abundance. As expected, the abundance histone H4 lysine 20 mono-methylation (H4K20me1), which is implicated both in erythroblast chromatin condensation (Malik Cell Reports 2017) and the regulation of RNA Polymerase II pausing (Kapoor-Vazirani MCB 2011) also significantly increased. Consistent with these data, integration of RNA-seq and ChIP-seq data identified 3,058 genes whose expression decreased from basophilic erythroblast to orthochromatic erythroblasts, which lost enrichment for H3K36me3 (mark of active elongation) without accumulating H3K27me3 (heterochromatin mark). Based on these data, we hypothesized that RNA polymerase II pausing is a critical regulator of gene expression in maturing erythroblasts. RNA Polymerase II (Pol II) pausing is a highly regulated mechanism of transcriptional regulation, whereby transcription is initiated, but pauses 30-60bp downstream of the transcription start site. For paused Pol II to be released into active elongation, pTEFb must hyper-phosphorylate Serine 2 of the Pol II c-terminal domain (CTD). Importantly, pTEFb can be directed to specific loci through interaction with transcription factors, including GATA1 (Elagib Blood 2008; Bottardi NAR 2011). Hexim1 is a key regulator of Pol II pausing that sequesters pTEFb and inhibits its action. Consistent with a central role for Pol II pausing dynamics in the regulation of terminal erythroid maturation, Hexim1 is highly expressed in erythroid cells compared to most other cell types and its expression increases during terminal erythroid maturation. Conversely, the expression of CCNT1 and CKD9, the components of pTEFb, decline during terminal maturation, and the level of elongation competent (Ser2 and Ser2/Ser5 CTD phosphorylated) Pol II also decreases dramatically. To gain insights into the function of Pol II pausing in maturing erythroblasts, we induced Hexim1 expression in HUDEP2 cells (Kurita PLoS One 2013) using hexamethane bisacetamide (HMBA). HMBA treatment increased Hexim1 levels a dose dependent manner and was associated with gene expression and phenotypic changes suggestive of accelerated erythroid maturation. Together, these data suggest that RNA Pol II pausing dynamics are an important regulator of terminal erythroid maturation. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 280 (43) ◽  
pp. 36244-36253 ◽  
Author(s):  
Joshua Francis ◽  
Swarup K. Chakrabarti ◽  
James C. Garmey ◽  
Raghavendra G. Mirmira

Expression of the insulin gene is nearly exclusive to the β cells of the pancreatic islets. Although the sequence-specific transcription factors that regulate insulin expression have been well studied, the interrelationship between these factors, chromatin structure, and transcriptional elongation by RNA polymerase II (pol II) has remained undefined. In this regard, recent studies have begun to establish a role for the methylation of histone H3 in the initiation or elongation of transcription by pol II. To determine a role for the transcriptional activator Pdx-1 in the maintenance of chromatin structure and pol II recruitment at the insulin gene, we performed small interfering RNA-mediated knockdown of Pdx-1 in βTC3 cells and subsequently studied histone modifications and pol II recruitment by chromatin immunoprecipitation. We demonstrated here that the 50% fall in insulin transcription following knockdown of Pdx-1 is accompanied by a 60% fall in dimethylated histone H3-Lys-4 at the insulin promoter. H3-Lys-4 methylation at the insulin promoter may be mediated, at least partially, by the methyltransferase Set9. Immunohistochemical analysis revealed that Set9 is expressed in an islet-enriched pattern in the pancreas, similar to the pattern of Pdx-1 expression. The recruitment of Set9 to the insulin gene appears to be a consequence of its direct interaction with Pdx-1, and small interfering RNA-mediated knockdown of Set9 attenuates insulin transcription. Pdx-1 knockdown was also associated with an overall shift in the recruitment of pol II isoforms to the insulin gene, from an elongation isoform (Ser(P)-2) to an initiation isoform (Ser(P)-5). Our findings therefore suggest a model whereby Pdx-1 plays a novel role in linking H3-Lys-4 dimethylation and pol II elongation to insulin transcription.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shu-Hao Liou ◽  
Sameer K. Singh ◽  
Robert H. Singer ◽  
Robert A. Coleman ◽  
Wei-Li Liu

AbstractThe tumor suppressor p53 protein activates expression of a vast gene network in response to stress stimuli for cellular integrity. The molecular mechanism underlying how p53 targets RNA polymerase II (Pol II) to regulate transcription remains unclear. To elucidate the p53/Pol II interaction, we have determined a 4.6 Å resolution structure of the human p53/Pol II assembly via single particle cryo-electron microscopy. Our structure reveals that p53’s DNA binding domain targets the upstream DNA binding site within Pol II. This association introduces conformational changes of the Pol II clamp into a further-closed state. A cavity was identified between p53 and Pol II that could possibly host DNA. The transactivation domain of p53 binds the surface of Pol II’s jaw that contacts downstream DNA. These findings suggest that p53’s functional domains directly regulate DNA binding activity of Pol II to mediate transcription, thereby providing insights into p53-regulated gene expression.


2010 ◽  
Vol 30 (10) ◽  
pp. 2460-2472 ◽  
Author(s):  
M. Nurul Islam ◽  
David Fox ◽  
Rong Guo ◽  
Takemi Enomoto ◽  
Weidong Wang

ABSTRACT The RecQL5 helicase is essential for maintaining genome stability and reducing cancer risk. To elucidate its mechanism of action, we purified a RecQL5-associated complex and identified its major component as RNA polymerase II (Pol II). Bioinformatics and structural modeling-guided mutagenesis revealed two conserved regions in RecQL5 as KIX and SRI domains, already known in transcriptional regulators for Pol II. The RecQL5-KIX domain binds both initiation (Pol IIa) and elongation (Pol IIo) forms of the polymerase, whereas the RecQL5-SRI domain interacts only with the elongation form. Fully functional RecQL5 requires both helicase activity and associations with the initiation polymerase, because mutants lacking either activity are partially defective in the suppression of sister chromatid exchange and resistance to camptothecin-induced DNA damage, and mutants lacking both activities are completely defective. We propose that RecQL5 promotes genome stabilization through two parallel mechanisms: by participation in homologous recombination-dependent DNA repair as a RecQ helicase and by regulating the initiation of Pol II to reduce transcription-associated replication impairment and recombination.


2004 ◽  
Vol 24 (7) ◽  
pp. 2932-2943 ◽  
Author(s):  
Hailing Cheng ◽  
Xiaoyuan He ◽  
Claire Moore

ABSTRACT Swd2, an essential WD repeat protein in Saccharomyces cerevisiae, is a component of two very different complexes: the cleavage and polyadenylation factor CPF and the Set1 methylase, which modifies lysine 4 of histone H3 (H3-K4). It was not known if Swd2 is important for the function of either of these entities. We show here that, in extract from cells depleted of Swd2, cleavage and polyadenylation of the mRNA precursor in vitro are completely normal. However, temperature-sensitive mutations or depletion of Swd2 causes termination defects in some genes transcribed by RNA polymerase II. Overexpression of Ref2, a protein previously implicated in snoRNA 3′ end formation and Swd2 recruitment to CPF, can rescue the growth and termination defects, indicating a functional interaction between the two proteins. Some swd2 mutations also significantly decrease global H3-K4 methylation and cause other phenotypes associated with loss of this chromatin modification, such as loss of telomere silencing, hydroxyurea sensitivity, and alterations in repression of INO1 transcription. Even though the two Swd2-containing complexes are both localized to actively transcribed genes, the allele specificities of swd2 defects suggest that the functions of Swd2 in mediating RNA polymerase II termination and H3-K4 methylation are not tightly coupled.


2001 ◽  
Vol 276 (15) ◽  
pp. 12266-12273 ◽  
Author(s):  
Wenxiang Wei ◽  
Dorjbal Dorjsuren ◽  
Yong Lin ◽  
Weiping Qin ◽  
Takahiro Nomura ◽  
...  

The general transcription factor IIF (TFIIF) assembled in the initiation complex, and RAP30 of TFIIF, have been shown to associate with RNA polymerase II (pol II), although it remains unclear which pol II subunit is responsible for the interaction. We examined whether TFIIF interacts with RNA polymerase II subunit 5 (RPB5), the exposed domain of which binds transcriptional regulatory factors such as hepatitis B virus X protein and a novel regulatory protein, RPB5-mediating protein. The results demonstrated that RPB5 directly binds RAP30in vitrousing purified recombinant proteins andin vivoin COS1 cells transiently expressing recombinant RAP30 and RPB5. The RAP30-binding region was mapped to the central region (amino acids (aa) 47–120) of RPB5, which partly overlaps the hepatitis B virus X protein-binding region. Although the middle part (aa 101–170) and the N-terminus (aa 1–100) of RAP30 independently bound RPB5, the latter was not involved in the RPB5 binding when RAP30 was present in TFIIF complex. Scanning of the middle part of RAP30 by clustered alanine substitutions and then point alanine substitutions pinpointed two residues critical for the RPB5 binding inin vitroandin vivoassays. Wild type but not mutants Y124A and Q131A of RAP30 coexpressed with FLAG-RAP74 efficiently recovered endogenous RPB5 to the FLAG-RAP74-bound anti-FLAG M2 resin. The recovered endogenous RPB5 is assembled in pol II as demonstrated immunologically. Interestingly, coexpression of the central region of RPB5 and wild type RAP30 inhibited recovery of endogenous pol II to the FLAG-RAP74-bound M2 resin, strongly suggesting that the RAP30-binding region of RPB5 inhibited the association of TFIIF and pol II. The exposed domain of RPB5 interacts with RAP30 of TFIIF and is important for the association between pol II and TFIIF.


2007 ◽  
Vol 82 (3) ◽  
pp. 1118-1127 ◽  
Author(s):  
Jinhong Chang ◽  
Xingcao Nie ◽  
Ho Eun Chang ◽  
Ziying Han ◽  
John Taylor

ABSTRACT Previous studies have indicated that the replication of the RNA genome of hepatitis delta virus (HDV) involves redirection of RNA polymerase II (Pol II), a host enzyme that normally uses DNA as a template. However, there has been some controversy about whether in one part of this HDV RNA transcription, a polymerase other than Pol II is involved. The present study applied a recently described cell system (293-HDV) of tetracycline-inducible HDV RNA replication to provide new data regarding the involvement of host polymerases in HDV transcription. The data generated with a nuclear run-on assay demonstrated that synthesis not only of genomic RNA but also of its complement, the antigenome, could be inhibited by low concentrations of amanitin specific for Pol II transcription. Subsequent studies used immunoprecipitation and rate-zonal sedimentation of nuclear extracts together with double immunostaining of 293-HDV cells, in order to examine the associations between Pol II and HDV RNAs, as well as the small delta antigen, an HDV-encoded protein known to be essential for replication. Findings include evidence that HDV replication is somehow able to direct the available delta antigen to sites in the nucleoplasm, almost exclusively colocalized with Pol II in what others have described as transcription factories.


Sign in / Sign up

Export Citation Format

Share Document