Manipulations of cholinesterase gene expression modulate murine megakaryocytopoiesis in vitro

1990 ◽  
Vol 10 (11) ◽  
pp. 6046-6050
Author(s):  
D Patinkin ◽  
S Seidman ◽  
F Eckstein ◽  
F Benseler ◽  
H Zakut ◽  
...  

Megakaryocytopoiesis was selectively inhibited in cultured murine bone marrow cells by a 15-mer oligodeoxynucleotide complementary to the initiator AUG region in butyrylcholinesterase mRNA. Furthermore, conditioned medium from Xenopus oocytes producing recombinant butyrylcholinesterase stimulated megakaryocytopoiesis. These observations implicate butyrylcholinesterase in megakaryocytopoiesis and suggest application of oligodeoxynucleotides for modulating bone marrow development.

1990 ◽  
Vol 10 (11) ◽  
pp. 6046-6050 ◽  
Author(s):  
D Patinkin ◽  
S Seidman ◽  
F Eckstein ◽  
F Benseler ◽  
H Zakut ◽  
...  

Megakaryocytopoiesis was selectively inhibited in cultured murine bone marrow cells by a 15-mer oligodeoxynucleotide complementary to the initiator AUG region in butyrylcholinesterase mRNA. Furthermore, conditioned medium from Xenopus oocytes producing recombinant butyrylcholinesterase stimulated megakaryocytopoiesis. These observations implicate butyrylcholinesterase in megakaryocytopoiesis and suggest application of oligodeoxynucleotides for modulating bone marrow development.


2022 ◽  
Author(s):  
Ines Borrego ◽  
Aurelien FROBERT ◽  
Guillaume AJALBERT ◽  
Jeremy VALENTIN ◽  
Cyrielle KALTENRIEDER ◽  
...  

Interactions between macrophages, cardiac cells and the extracellular matrix are crucial for cardiac repair following myocardial infarction (MI). The paracrine effects of cell-based treatments of MI might modulate these interactions and impact cardiac repair. The immunomodulatory capacity of the therapeutic cells is therefore of interest and could be modulated by the use of biomaterials. We first showed that bone marrow cells (BMC) associated with fibrin could treat MI. Then, we interrogated the influence of fibrin, as a biologically active scaffold, on the secretome of BMC and the impact of their association on macrophage fate and cardiomyoblast proliferation. Methods: In vivo, two weeks post-MI, rats were treated with epicardial implantation of BMC and fibrin or sham-operated. High-resolution echocardiography was performed to evaluate the heart function and structure changes after 4 weeeks. Histology and immunostaining were performed on harvested hearts. In vitro, BMC were first primed with fibrin. Second, non-polarized macrophages were differentiated toward either pro-inflammatory or anti-inflammatory phenotypes and stimulated with the conditioned medium of fibrin-primed BMC (F-BMC). Proteomic, cytokine levels quantification, and RT-PCR were performed. EdU incorporation and real-time cell analysis assessed cell proliferation. Results: The epicardial implantation of fibrin and BMC reduced the loss of cardiac function induced by MI, increased wall thickness and prevented the fibrotic scar expansion. After 4 and 12 weeks, the infarct content of CD68+ and CD206+ was similar in control and treated animals. In vitro, we showed that fibrin profoundly influenced the gene expression and the secretome of BMC, simultaneously upregulating both pro- and anti-inflammatory mediators. Furthermore, the conditioned medium from F-BMC significantly increased the proliferation of macrophages in a subsets dependent manner and modulated their gene expression and cytokines secretion. For instance, F-BMC significantly downregulated the expression of Nos2, Il6 and Ccl2/Mcp1 while Arg1, Tgfb and IL10 were upregulated. Interestingly, macrophages educated by F-BMC increased cardiomyoblast proliferation. In conclusion, our study provides evidence that BMC/fibrin-based treatment lowered the infarct extent and improved cardiac function. The macrophage content was unmodified when measured at a chronic stage. Nevertheless, acutely and in vitro, the F-BMC secretome promotes an anti-inflammatory response that stimulates cardiac cell growth. Finally, our study emphases the acute impact of F-BMC educated macrophages on cardiac cell fate.


1983 ◽  
Vol 11 (3) ◽  
Author(s):  
Philip Lazarus ◽  
JudithSt Germina ◽  
Maurice Dufour ◽  
Greg Palmer ◽  
Deborah Wallace ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4194-4194
Author(s):  
Tobias Berg ◽  
Michael Heuser ◽  
Florian Kuchenbauer ◽  
Gyeongsin Park ◽  
Stephen Fung ◽  
...  

Abstract Abstract 4194 Cytogenetically normal acute myeloid leukemia (CN-AML) patients with high BAALC or MN1 expression have a poor prognosis. Whereas the oncogenic function of MN1 is well established, the functional role of BAALC in hematopoiesis is not known. We therefore compared the expression of BAALC and MN1 in 140 CN-AML patients by quantitative PCR. To further assess the impact of BAALC on leukemogenesis we used retroviral gene transfer into primary murine bone marrow cells and cells immortalized with NUP98-HOXD13 (ND13) and HOXA9. Transduced cells were assessed in vitro by colony forming assays and for their sensitivity to treatment with all-trans retinoic acid (ATRA). They were also evaluated by in vivo transplantation into lethally-irradiated mice. In the 140 CN-AML patients analyzed, the expression of BAALC and MN1 was highly correlated (R=0.71). Retroviral overexpression of MN1 or BAALC in the Hox gene-immortalized bone marrow cells did not cause upregulation of the other gene, suggesting that these genes do not regulate each other. In murine bone marrow cells BAALC did not immortalize the cells in vitro as assessed by serial replating of transduced cells in methylcellulose assays. Transplantation of transduced cells resulted in negligible engraftment of approximately 1 percent at 4 weeks after transplantation. However, co-transduction of BAALC into NUP98-HOXD13 cells (which are very sensitive to the treatment with all-trans retinoic acid) increased the 50 percent inhibitory concentration (IC50) of ATRA by 4.3-fold, suggesting a negative impact of BAALC on myeloid differentiation. We next evaluated whether the differentiation inhibiting effects of BAALC may cooperate with the self renewal-promoting effects of HOXA9 to induce leukemia in mice. Mice receiving transplants of murine bone marrow cells transduced with BAALC and HOXA9 developed myeloid leukemias with a median latency of 139.5 days that were characterized by leukocytosis, massively enlarged spleens (up to 1.02 g), anemia and thrombocytopenia. Infiltrations of myeloid cells were also found in liver, spleen, and kidney. The disease was transplantable into secondary animals. By Southern blot analysis we found one to two BAALC viral integrations per mouse, suggesting that clonal disease had developed from BAALC-transduced cells. We demonstrate for the first time that BAALC blocks myeloid differentiation and promotes leukemogenesis when combined with the self-renewal promoting oncogene HOXA9. Due to its prognostic and functional effects BAALC may become a valuable therapeutic target in leukemia patients. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2000 ◽  
Vol 14 (4) ◽  
pp. 735-739 ◽  
Author(s):  
MG Cipolleschi ◽  
E Rovida ◽  
Z Ivanovic ◽  
V Praloran ◽  
M Olivotto ◽  
...  

1985 ◽  
Vol 92 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Gary R. Klimpel ◽  
Marcella Sarzotti ◽  
Victor E. Reyes ◽  
Kathleen D. Klimpel

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1452-1452
Author(s):  
Jean-Yves Metais ◽  
Rotraud Wieser ◽  
Cynthia E. Dunbar

Abstract We have found non-random patterns of retroviral integration in long-term hematopoietic repopulating cells in the rhesus macaque, with frequent integration events of MLV vectors into the MDS1-EVI1 gene complex. These findings, along with reports regarding frequent integration events in the same gene complex in patients with chronic granulomatous disease receiving MLV-transduced hematopoietic cells in a clinical trial and the ability of MLV vectors activating expression of this gene via integration to immortalize primary murine bone marrow cells, suggests these gene products could have important roles in normal and leukemic hematopoiesis. Expression from this gene complex can result in translation of at least three distinct proteins: MDS1, EVI1, and MDS1-EVI1. EVI1 has been the most studied protein of this locus. Its overexpression, as a consequence of chromosomal rearrangement or viral integration, is associated with leukemia. MDS1-EVI1 contains a PR domain that is lacking in EVI1 and is thought to possibly be antagonistic to EVI1, however the location of the integrations in our prior rhesus studies would indicate that overexpression of either gene product could be immortalizing. Both proteins share the same expression profile in normal tissues as well as most reports of myeloid leukemias. To investigate the impact of the three gene products on hematopoietic cells, we cloned murine mds1, evi1, and mds1-evi1 into the pMIEV-GFP retroviral vector and produced ecotropic vector particles. These were used to transduce the murine BaF3 hematopoietic cell line as a model to study the impact of expression of these various gene products. Gene expression analysis using Afflymetrix arrays demonstrated that both EVI1 and MDS1-EVI1 expression produced dramatic changes in gene expression profiles of these cells, compared to MDS1 and control vector. For instance, EVI1 transduced cells overexpressed oncogenes such as small G proteins belonging to the RAS family. There was modulation of genes implied in hematopoiesis, apoptosis, TGF beta signaling, and cell cycle. To assess changes in cell cycling of transduced BaF3 cells we used a flow cytometric assay, which unraveled an arrest in G1 phase only when EVI1 was overexpressed. These changes were concomitant to an increased metabolic activity as measured by an MTT assay. Further studies of these different pathways have to be performed in order to confirm the results obtained by the DNA chips analysis. Primary murine bone marrow cells could be immortalized after transduction by both EVI1 and MDS1-EVI1 vectors, compared to MDS1 and control vectors. Mice have been transplanted with primary bone marrow cells transduced with all vectors, and are being followed for hematopoietic changes or leukemia. In conclusion, both MDS1-EVI1 and EVI1 overexpression appear to result in marked changes in the behavior of primitive hematopoietic cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2440-2440
Author(s):  
Nils Heinrich Thoennissen ◽  
Tadayuki Akagi ◽  
Sam Abbassi ◽  
Daniel Nowak ◽  
Ann George ◽  
...  

Abstract CCAAT/enhancer binding protein (C/EBP) transcription factors are involved in a variety of cellular responses including proliferation and differentiation. Although C/EBPβ and C/EBPε are believed to be most important for macrophage and granulocyte activity, respectively, experiments by others and ourselves suggest a possible overlap in their function in myelopoiesis. In order to explore further this potential redundancy, we assessed the in vivo and in vitro function of both transcription factors by generating a double knockout (KO) germline murine model (C/EBPβ/ε−/−/−/−) and compared their hematopoiesis to those of single deficient (C/EBPβ−/−, C/EBPε−/−) and wild-type (WT) mice. Gene expression analysis of bone marrow cells showed expression of C/EBPβ in C/EBPε−/− and WT mice, and vice versa. The weight of the double-KO mice was significantly less as measured at 4 weeks of age (11.5 ± 0.9 g) compared to WT (13.4 ± 0.6 g), C/EBPβ−/− (14.5 ± 1.4 g), and C/EBPε−/− mice (15.4 ± 2.3 g) (p < 0.05). The double-KO mice were prone to infections of the eyes, lungs, liver, and peritoneum. In contrast, C/EBPβ−/−, C/EBPε−/− and WT mice demonstrated no signs of infection. Microscopic imaging of peripheral blood showed metamyelocytes and myelocytes in the double-KO mice. FACS analysis found that the fraction of bone marrow cells which were Lin(−) (no expression of B220, CD3, Gr1, Ter119, and Mac1) were modestly elevated in double-KO and C/EBPβ−/− mice (8.42 % and 8.1 %, respectively) compared to C/EBPε−/− (4.24 %) and WT (3.93 %) mice. A subanalysis highlighted an elevated level of B220(−)/Gr1(−) bone marrow cells in the double-KO mice (54 %) compared to the levels in the C/EBPβ−/− (31 %), C/EBPε−/− (33 %) and WT (21.5 %) mice. Moreover, the proportion of hematopoietic stem cells in the bone marrow were significantly increased in the hematopoietic stem cell compartment [Sca1(+)/c-Kit(+)] in the double-KO mice (20.8 %) compared to the C/EBPβ−/− (6.9 %), C/EBPε−/− (5.9 %) and WT (6.9 %) mice. When given a cytotoxic stress (5-FU) to kill cycling hematopoietic progenitor cells, the mean neutrophil count at their nadir (day 4) was 0.14 × 109 cells/L in the double-KO mice compared to 0.71 × 109 cells/L in the WT mice (p < 0.001); both reached normal values again on day 10. Taken together, these results indicated a relatively higher percentage of immature hematopoietic cells in the double-KO mice compared to the WT mice. Nevertheless, clonogenic assays in methylcellulose using bone marrow cells of the double-KO showed a significant decreased number of myeloid colonies. For example, in the presence of G-CSF, GM-CSF, and SCF, a mean of 83 ± 10 hematopoietic colonies formed in the double-KO mice compared to 135 ± 6 in C/EBPβ−/−, 159 ± 12 in C/EBPε−/− and 165 ± 2 in WT mice (p < 0.001, double-KO vs. WT). Similar clonogenic results occurred when bone marrow cells were stimulated with either G-CSF, GM-CSF or SCF/G-CSF alone. Although our in vitro experiments suggested that double-KO mice had a decreased clonogenic response to G-CSF, their bone marrow cells had normal levels of phosphorylated STAT3 protein when stimulated with G-CSF. Hence, the G-CSFR and its secondary signaling pathway seemed to be intact. In further experiments, downstream targets of the C/EBP transcription factors were examined. Bone marrow macrophages activated with LPS and IFNγ from both double-KO and C/EBPβ−/− mice had decreased gene expression of IL6, IL12p35, TNFα, and G-CSF compared to the levels detected in macrophages of C/EBPε−/− and WT. Interestingly, expression levels of cathelicidin antimicrobial peptide (CAMP) were similarly robust in the macrophages from C/EBPβ−/−, C/EBPε−/−, and WT mice. In sharp contrast, CAMP expression was undetectable in the activated macrophages of the double-KO mice. In conclusion, the phenotype of the double-KO mice was often distinct from the C/EBPβ−/− and C/EBPε−/− mice suggesting a redundancy of activity of both transcription factors in myeloid hematopoiesis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 229-229
Author(s):  
Michael Heuser ◽  
Eric Yung ◽  
Courteney Lai ◽  
Bob Argiropoulos ◽  
Florian Kuchenbauer ◽  
...  

Abstract Abstract 229 Overexpression of MN1 (meningioma 1) is a negative prognostic factor in acute myeloid leukemia (AML) patients with normal cytogenetics, and induces a rapidly lethal AML in mice. We have shown previously that MN1, a transcription cofactor of retinoic acid receptor alpha (RARA), increases resistance to all-trans retinoic acid (ATRA) by greater than 3000-fold in an in-vitro differentiation model. We investigated the molecular mechanisms involved in the MN1-induced myeloid differentiation block by fusing potent transcriptional activation or repression domains to MN1, conducting a structure-function analysis of MN1, gene expression profiling, ChIP-on chip experiments, and functional validation of MN1 target genes. We found that (1) MN1 inhibits myeloid differentiation through transcriptional repression; (2) the C-terminal domain of MN1 is critical for induction of resistance to ATRA; (3) EGR2 is a putative direct target of MN1 and RARA that is repressed in MN1 leukemias; and (4) that constitutive upregulation of EGR2 in MN1 leukemias permits differentiation and prevents engraftment of transplanted cells. To investigate whether MN1 impacts on myeloid differentiation through transcriptional activation or repression we fused a strong transcriptional activation domain (VP16) or repression domain (M33) to MN1. MN1VP16 immortalized murine bone marrow cells, however, these cells could differentiate to mature granulocytes, and succumbed to cell cycle arrest upon treatment with ATRA. Mice receiving transplants of MN1VP16 cells had a median survival of 143 days (n=16) compared to 35 days in mice receiving MN1-transduced cells (n=18; p<.001). Morphologic analysis of bone marrow mostly showed mature granulocytes with less than 20 percent immature forms consistent with a diagnosis of myeloproliferative-like disease. Conversely, mice receiving transplants with cells transduced with the fusion of MN1 to the transcriptional repression domain of M33 (n=7) developed leukemia with a similar latency and phenotype as mice receiving transplants from MN1-transduced cells (survival, P=.6). These data suggest that MN1 inhibits myeloid differentiation by transcriptional repression rather than activation of its target genes. A structure-function analysis was performed to identify the domain(s) of MN1 required to inhibit myeloid differentiation. Consecutive stretches of 200 amino acids of MN1 were interrogated The deletion constructs were subsequently transduced into bone marrow cells immortalized by NUP98-HOXD13 (ND13). ND13 cells are very sensitive to ATRA-induced differentiation and cell cycle arrest with an IC50 of 0.1 μ M, whereas overexpression of MN1 increases resistance greater than 3000-fold. Interestingly, deletion of the 200 C-terminal amino acids of MN1 restored ATRA sensitivity of ND13 cells compared to full-length MN1, suggesting that the C-terminus of MN1 is required for inhibition of myeloid differentiation. To identify MN1-regulated genes important for the myeloid differentiation block we performed gene expression profiling of MN1- and MN1VP16-transduced bone marrow cells. To further identify genes that might be directly regulated by MN1 we performed ChIP-on-chip using anti-MN1 and anti-RARA antibodies. EGR2, CCL5, CMAH, among others, were identified as targets of both MN1 and RARA whose gene expression was low in MN1 but high in MN1VP16 cells. Overexpression of these genes in MN1-transduced leukemic cells was used to validate their function. Blast percentage of in vitro cultured bone marrow cells was 93, 58, 83, and 41 percent in MN1+CTL cells, MN1+EGR2, MN1+CCL5, and MN1+CMAH cells, respectively. MN1+EGR2 cell engraftment in peripheral blood of mice declined from 2.2 percent at 4 weeks to undetectable levels at 8 weeks (n=4), whereas MN1+CCL5 and MN1+CMAH cell engraftment was 23 (n=4) and 26 (n=4) percent at 4 weeks, and 14 and 30 percent at 8 weeks, respectively. At time of death, EGR2 was not detectable in mice whereas leukemias of mice receiving MN1+CCL5 or MN1+CMAH- transduced cells were positive for CCL5 or CMAH, respectively. In conclusion, our data suggest that MN1 inhibits myeloid differentiation by transcriptional repression of a subset of its target genes, and that re-expression of EGR2, a zinc-finger transcription factor, may prevent outgrowth of MN1 leukemias in mice. Pharmacologic activation of EGR2 may become a novel antileukemic strategy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document