Frequent in Vivo redundancy of C/EBPβ and C/EBPε during Myeloid Development

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2440-2440
Author(s):  
Nils Heinrich Thoennissen ◽  
Tadayuki Akagi ◽  
Sam Abbassi ◽  
Daniel Nowak ◽  
Ann George ◽  
...  

Abstract CCAAT/enhancer binding protein (C/EBP) transcription factors are involved in a variety of cellular responses including proliferation and differentiation. Although C/EBPβ and C/EBPε are believed to be most important for macrophage and granulocyte activity, respectively, experiments by others and ourselves suggest a possible overlap in their function in myelopoiesis. In order to explore further this potential redundancy, we assessed the in vivo and in vitro function of both transcription factors by generating a double knockout (KO) germline murine model (C/EBPβ/ε−/−/−/−) and compared their hematopoiesis to those of single deficient (C/EBPβ−/−, C/EBPε−/−) and wild-type (WT) mice. Gene expression analysis of bone marrow cells showed expression of C/EBPβ in C/EBPε−/− and WT mice, and vice versa. The weight of the double-KO mice was significantly less as measured at 4 weeks of age (11.5 ± 0.9 g) compared to WT (13.4 ± 0.6 g), C/EBPβ−/− (14.5 ± 1.4 g), and C/EBPε−/− mice (15.4 ± 2.3 g) (p < 0.05). The double-KO mice were prone to infections of the eyes, lungs, liver, and peritoneum. In contrast, C/EBPβ−/−, C/EBPε−/− and WT mice demonstrated no signs of infection. Microscopic imaging of peripheral blood showed metamyelocytes and myelocytes in the double-KO mice. FACS analysis found that the fraction of bone marrow cells which were Lin(−) (no expression of B220, CD3, Gr1, Ter119, and Mac1) were modestly elevated in double-KO and C/EBPβ−/− mice (8.42 % and 8.1 %, respectively) compared to C/EBPε−/− (4.24 %) and WT (3.93 %) mice. A subanalysis highlighted an elevated level of B220(−)/Gr1(−) bone marrow cells in the double-KO mice (54 %) compared to the levels in the C/EBPβ−/− (31 %), C/EBPε−/− (33 %) and WT (21.5 %) mice. Moreover, the proportion of hematopoietic stem cells in the bone marrow were significantly increased in the hematopoietic stem cell compartment [Sca1(+)/c-Kit(+)] in the double-KO mice (20.8 %) compared to the C/EBPβ−/− (6.9 %), C/EBPε−/− (5.9 %) and WT (6.9 %) mice. When given a cytotoxic stress (5-FU) to kill cycling hematopoietic progenitor cells, the mean neutrophil count at their nadir (day 4) was 0.14 × 109 cells/L in the double-KO mice compared to 0.71 × 109 cells/L in the WT mice (p < 0.001); both reached normal values again on day 10. Taken together, these results indicated a relatively higher percentage of immature hematopoietic cells in the double-KO mice compared to the WT mice. Nevertheless, clonogenic assays in methylcellulose using bone marrow cells of the double-KO showed a significant decreased number of myeloid colonies. For example, in the presence of G-CSF, GM-CSF, and SCF, a mean of 83 ± 10 hematopoietic colonies formed in the double-KO mice compared to 135 ± 6 in C/EBPβ−/−, 159 ± 12 in C/EBPε−/− and 165 ± 2 in WT mice (p < 0.001, double-KO vs. WT). Similar clonogenic results occurred when bone marrow cells were stimulated with either G-CSF, GM-CSF or SCF/G-CSF alone. Although our in vitro experiments suggested that double-KO mice had a decreased clonogenic response to G-CSF, their bone marrow cells had normal levels of phosphorylated STAT3 protein when stimulated with G-CSF. Hence, the G-CSFR and its secondary signaling pathway seemed to be intact. In further experiments, downstream targets of the C/EBP transcription factors were examined. Bone marrow macrophages activated with LPS and IFNγ from both double-KO and C/EBPβ−/− mice had decreased gene expression of IL6, IL12p35, TNFα, and G-CSF compared to the levels detected in macrophages of C/EBPε−/− and WT. Interestingly, expression levels of cathelicidin antimicrobial peptide (CAMP) were similarly robust in the macrophages from C/EBPβ−/−, C/EBPε−/−, and WT mice. In sharp contrast, CAMP expression was undetectable in the activated macrophages of the double-KO mice. In conclusion, the phenotype of the double-KO mice was often distinct from the C/EBPβ−/− and C/EBPε−/− mice suggesting a redundancy of activity of both transcription factors in myeloid hematopoiesis.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1280-1280
Author(s):  
Vaia Stavropoulou ◽  
Susanne Kaspar ◽  
Laurent Brault ◽  
Sabine Juge ◽  
Stefano Morettini ◽  
...  

Abstract Abstract 1280 Previous studies have shown that the expression of several leukemia-associated mixed lineage leukemia (MLL) fusion genes transformed human and mouse bone marrow cells in vitro and in vivo. In order to dissect the molecular and cellular targets of the MLL-AF9 fusion, we generated a novel inducible doxycycline (DOX)-regulated transgenic mouse model. Conditional ex vivo activation of MLL-AF9 induced aberrant self-renewal and impaired differentiation of long-term or short-term hematopoietic stem (LT-HSC and ST-HSC), common myeloid progenitor (CMP) and granulocyte-macrophage progenitor (GMP) cells in a fully reversible manner. Direct activation of the fusion in vivo or after transplantation of transgenic bone marrow cells into irradiated hosts induced an aggressive and transplantable disease after a median latency of 80days characterized as acute myelo-monocytic leukemia closely mimicking the human disease. Fusion gene expression and leukemia induction was DOX dosage dependent and reversible upon DOX removal. Activation of MLL-AF9 in isolated LT-HSC or GMP cells in vitro or in vivo resulted in the accumulation of immature blast-like cells with similar immunophenotypes. However, MLL-AF9-expressing stem and progenitor cells displayed distinct properties such as colony formation, differentiation and resistance to chemotherapeutic drugs. Turning-off the fusion resulted in multi-lineage differentiation of LT-HSC-derived cells, whereas GMP-derived cells were limited to mature macrophages and granulocytes suggesting partial maintenance of their original identity. In line with these in vitro observations, lower cell numbers of transplanted LT-HSCs induced a more aggressive leukemia with a significantly shorter latency as compared to ST-HSC, CMP or GMPs. Immunophenotypically 15% of the LT-HSC derived leukemias displayed a CMP–like phenotype and had a median latency of 37d (“early”) whereas the rest of the cases displayed a GMP-like phenotype with a median latency of 73d (“late”). In contrast, only GMP-like phenotypes and longer latencies were observed upon transplanting ST-HSCs (75d), CMPs (72d) or GMPs (100d). Transplantation of blasts from “early” LT-HSC- and GMP-derived leukemias into secondary recipients induced the disease after similar latency, however, cytarabine (Ara-C) treatment significantly delayed only the disease induced by GMP- but not by LT-HSC-derived blasts. Gene expression profiling in immortalized pre-leukemic cells revealed down-regulation of over 300 genes, including several well-known MLL targets such as Meis1, HoxA5, HoxA9 and HoxA10 upon reducing the levels of MLL-AF9 expression. Likewise, we observed a global decrease in histone H3 lysine 79 dimethylation consistent with a Dot1l function in MLL-AF9 driven leukemia. LT-HSC-derived (“early”) blasts displayed distinct genetic signatures with > 400 genes highly and > 1300 genes lowly expressed (p001 fc1.5), clearly separating them from the GMP-derived blasts. Evi-1 and Erg, two prognostic markers in patient-derived gene signatures, stood out among these genes. The aggressive “early” LT-derived murine leukemias showed high Evi-1 and Erg expression levels (Evi-1 high, Erg high) as compared to the “late” LT-derived (Evi-1 low, Erg high) or the GMP-derived leukemias (Evi-1 low, Erg low). These observations suggest that the previously reported poor prognosis associated with elevated EVI-1 and/or ERG expression might directly reflect the cell of origin of the disease. We are currently exploiting our highly informative MLL-AF9 disease model to evaluate the functional relevance of novel origin-dependent MLL-AF9 target genes and to identify novel prognostic markers and therapeutic targets. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (15) ◽  
pp. 3001-3006 ◽  
Author(s):  
Andreas Weigert ◽  
Benjamin Weichand ◽  
Divya Sekar ◽  
Weixiao Sha ◽  
Christina Hahn ◽  
...  

Abstract Hypoxia-inducible factors (HIFs) regulate hematopoiesis in the embryo and maintain hematopoietic stem cell function in the adult. How hypoxia and HIFs contribute to hematopoietic lineage differentiation in the adult is ill defined. Here we provide evidence that HIF-1 limits differentiation of precursors into plasmacytoid dendritic cells (pDCs). Low oxygen up-regulated inhibitor of DNA binding 2 (ID2) and suppressed Flt3-L–induced differentiation of bone marrow cells to pDCs in wild-type but not HIF-1αfl/fl LysM-Cre bone marrow cells. Moreover, pDC differentiated normally in hypoxic ID2−/− bone marrow cultures. Finally, we observed elevated pDC frequencies in bone marrow, blood, and spleen of HIF-1αfl/fl LysM-Cre and ID2−/−, but not HIF-2αfl/fl LysM-Cre mice. Our data indicate that the low oxygen content in the bone marrow might limit pDC development. This might be an environmental mechanism to restrict the numbers of these potentially autoreactive cells.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1543-1543
Author(s):  
Xiaona You ◽  
Guangyao Kong ◽  
Erik A. Ranheim ◽  
Yun Zhou ◽  
Jing Zhang

Abstract As members of small GTPase super family, the functional output of Ras proteins depends on their GTP binding status, which is regulated by the interactions with guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Activating mutations in NRAS and KRAS isoforms are identified in various types of hematopoietic malignancies. Interestingly, the same oncogenic mutation (G12D) at the endogenous Kras locus displays much more potent leukemogenic activity than that at the endogenous Nras locus in vivo. Moreover, combined inhibition of MEK and ERK provides long-term disease-free survival in NrasG12D/G12D mice but had much less effect in KrasG12D/+ mice. During our investigation to understand the potent leukemogenic activity of oncogenic Kras, we found that in total bone marrow cells, oncogenic Kras, but not oncogenic Nras, induces hyperactivation of wild-type (WT) Hras and Nras. We hypothesize that the hyperactivated WT Ras significantly contributes to oncogenic Kras-mediated leukemogenesis and inhibition of this process might improve the sensitivity of oncogenic Kras cells towards combined therapy. Because Sos1, a RAS GEF, has been implicated in oncogenic Ras-mediated activation of WT Ras in human cancer cell lines, we investigated whether Sos1 plays an essential role in this process in vivo. We find that Sos1 is overexpressed in KrasG12D/+ bone marrow cells. Genetic deletion of Sos1 indeed significantly decreases the GTP-bound active form of WT Nras and Hras without affecting the activation status of oncogenic Kras. Consequently, Sos1 deficiency-mediated downregulation of ERK activation rescues oncogenic Kras mediated depletion of hematopoietic stem cells (HSCs). HSCs, multipotent progenitors (MPPs) and LSKs (Lin-Sca-1+c-Kit+) in KrasG12D/+;Sos1-/- mice are much more quiescent than those in KrasG12D/+ mice. Moreover, Sos1 deficiency significantly inhibits granulocyte-macrophage colony stimulating factor (GM-CSF) evoked ERK signaling in KrasG12D/+ myeloid progenitor and precursor cells. Consistent with these biochemical data, we show that myeloproliferative neoplasm (MPN) phenotypes are significantly alleviated in KrasG12D/+;Sos1-/- mice and these animals survived significantly longer than KrasG12D/+ mice. However, we find that in differentiated myeloid cells (e.g. neutrophils), loss of Sos1 does not affect GM-CSF-evoked ERK activation. This result is consistent with our previous finding that Ras-mediated ERK activation in differentiated myeloid cells is predominantly through Kras but not Hras or Nras. Together, our results demonstrate that Sos1 mediates oncogenic Kras-induced hyperactivation of WT Ras. Inhibition of Sos1 thus blocks this process and attenuates the leukemogenic activity of oncogenic Kras. In contrast, Sos1 deficiency does not affect the unique signaling mediated by oncogenic Kras itself. Therefore, we hypothesize that targeting Sos1 alone will not effectively treat KrasG12D-associated leukemias but it might increase the sensitivity of KrasG12D cells to other therapies, such as combined inhibition of MEK and JAK. We are currently testing this hypothesis in vivo. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1758-1758
Author(s):  
Axel Schambach ◽  
Bernhard Schiedlmeier ◽  
Jens Bohne ◽  
Dorothee von Laer ◽  
Geoff Margison ◽  
...  

Abstract T20 is a 36-amino-acid peptide that binds to HIV-1 gp41 and thereby acts as a fusion inhibitor, thus mediating potent and selective inhibition of HIV-1 entry in vitro and in vivo. An extended peptide expressed as an artificial, membrane-bound molecule (mbC46) efficiently inhibits HIV infection of primary human T-cells following retroviral vector mediated gene transfer (Egelhofer et al., J Virol, 2004). To develop an even more stringent approach to HIV gene therapy, we targeted hematopoietic stem cells. In 3 experimental groups of C57BL/6 mice (9 animals/group), we investigated the long-term toxicity of murine bone marrow cells transduced with M87o, a therapeutic vector designed to coexpress mbC46 and an HIV-derived RNA RRE-decoy to inhibit HIV replication. As controls we used the same vector containing an inactive C46 peptide and mock-transduced cells. Blood samples were collected monthly. Donor chimerism and transgene expression in multiple lineages were determined by FACS analysis and transgene integration was measured by real time PCR. Six months after transplantation, 4 mice per group were sacrificed and the remaining 5 mice per group were observed for another 6 months. In addition to the parameters mentioned above, we performed complete histopathology, blood counts and clinical biochemistry. Donor chimerism in all groups ranged from 82 – 94% (day 190 and day 349). In the M87o group, 60% of donor cells expressed mbC46. FACS data showed persisting transgene expression in T-cells (CD4, CD8, 65%), B-cells (B220, 46%), myeloid cells (CD11b, 68%), platelets (CD41, 19%), and RBC (60%) of the peripheral blood and bone marrow cells. Highly sustained gene marking (2–4 copies/genome) was noticed on day 190. To reveal latent malignant clones potentially originating from side effects of the genetic manipulation, 1x106 bone marrow cells from 4 primary recipients were transplanted into lethally irradiated secondary recipients (3 recipients/primary mouse) and these mice were observed for 8 months. All together, we could not observe any evidence for leukemogenic capacity. Analysis of peripheral blood and bone marrow showed a similar transgene expression pattern compared to the primary mice. To generate a complete chimerism of transgenic cells, we chose the human drug resistance gene methylguanine-methyltransferase (MGMT, P140K) to select for mbC46-transduced stem cells in vitro and in vivo. Different coexpression strategies were tested. Function of the MGMT protein was confirmed in a quantitative alkyltransferase assay and in a cytotoxicity assay using BCNU or temozolomide. In vitro selection of transduced 32D and PM1 cells with benzylguanine and BCNU showed >95% positive cells with evidence of polyclonal survival. Transduced PM1 cells underwent an HIV challenge assay. In vivo experiments in a murine bone marrow transplantation setting are ongoing to determine the potency and safety of combined retroviral expression of mbC46 and MGMT in relevant preclinical models. Successful conclusion of these studies will hopefully result in a phase I clinical trial testing the concept of generating an HIV-resistant autologous hematopoiesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 859-859
Author(s):  
Seiji Fukuda ◽  
Edward M. Conway ◽  
Louis M. Pelus

Abstract The inhibitor of apoptosis protein Survivin is barely detectable in most normal adult tissues but is over-expressed in almost all cancers. Survivin regulates apoptosis, cell division and cell cycle, making anti-Survivin therapy an attractive cancer treatment strategy. We reported that Survivin is expressed and regulated by hematopoietic growth factors in normal human CD34+ cells and that over-expression of wild-type Survivin in bone marrow cells enhances in vitro proliferation and survival of normal hematopoietic progenitor cells, whereas disrupting Survivin reduced their proliferation and survival. These results suggest that Survivin regulates normal hematopoietic progenitor cell function. Although targeted anti-Survivin therapies for cancers demonstrate efficacy without overt toxicity in animal models, the consequences of in vivo Survivin disruption in normal hematopoietic stem and progenitor cells (HSPC) has not been determined. In order to understand the physiological roles of Survivin in normal HSPC function in vivo, we created Cre-ER™/Survivin flox/flox mice, in which the Survivin gene can be excised by Tamoxifen treatment and characterized HSPC growth following Survivin gene deletion. RT-PCR analysis showed that Survivin mRNA is expressed in freshly isolated normal mouse marrow Sca-1+, c-kit+, lin− (SKL) cells and more primitive CD34−SKL cells, which contain long term repopulating hematopoietic stem cells (HSC). Administration of 5mg of Tamoxifen for 6 days (3 days injection, 3 days off, 3 additional days and analyzed 14 days after final injection) in Cre-ER™/Survivin flox/flox mice induced Survivin gene deletion in marrow cells, but had little effect on peripheral blood cell count, marrow cellularity (3.5+/−7.1%, NS) or the proportion or total number of lineage committed cells (Gr-1+, Mac-1+, B220+, CD4+ and/or CD8+) in marrow and in peripheral blood. In contrast, short term Survivin deletion significantly decreased the frequency and the absolute number of undifferentiated linneg cells (37+/−6% reduction), c-kit+, lin− cells (35.2+/−8.4% reduction,), CFU-GM (31+/−9 % reduction), Lin−, IL7Ra−, Sca-1−, c-kit+, CD34+, Fcglow common myeloid progenitor cells (52+/−13% reduction), SKL cells (56.8+/−5.4% reduction) and CD34−SKL cells (60.6+/−5.5% reduction) in bone marrow compared to control mice. The effect of Survivin gene deletion was more dramatic on primitive hematopoietic populations compared to mature cells, which is consistent with down-regulation of Survivin in hematopoietic cells with terminal differentiation. Similarly, treatment of bone marrow cells from Cre-ER™/Survivin flox/flox mice with 1uM of Tamoxifen in vitro significantly reduced the number of CFU-GM, (c-kit+, lin−) KL, SKL and CD34−SKL cells cultured with hematopoietic cytokines and increased apoptosis measured by Annexin-V staining. These results suggest that Survivin is required and regulates normal hematopoietic stem and progenitor function in vivo and that Survivin function may be selectively essential for growth and differentiation of primitive hematopoietic cells. In addition, acute ablation of Survivin may cause adverse toxicity on HSPC that provide long term hematopoiesis in the patients receiving anti-Survivin target therapies.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2412-2412
Author(s):  
Yujie Wen ◽  
Yiming Huang ◽  
Thomas O Miller ◽  
Mariusz Z Ratajczak ◽  
Suzanne T Ildstad

Abstract CD8+TCR- bone marrow facilitating cells (FCs) facilitate engraftment of hematopoietic stem cells (HSCs) in both allogeneic and syngeneic recipients. We recently reported that co-administration of FCs with HSCs established chimerism and induced tolerance to renal allografts without graft-versus-host disease and engraftment syndrome in HLA-mismatched living donor renal transplant recipients. Homing of HSCs to the bone marrow niche is believed to be a crucial prerequisite for engraftment. Therefore, we evaluated whether FCs enhance functional HSC homing and retention in the hematopoietic niche using the in vivo syngeneic homing model followed by colony-forming cell (CFC) assay. B6 mice were conditioned with a supralethal dose (1200 cGy) of total body irradiation (TBI) and transplanted with 75,000 B6 FCs, 25,000 B6 HSCs or FCs plus HSCs 24 hours after TBI. At 18 hours after transplantation, bone marrow cells were harvested from the recipient’s femurs and tibias and placed in CFC assay using methylcellulose-based media. Bone marrow cells harvested from mice transplanted with FCs without HSCs or those receiving conditioning alone did not generate colonies, confirming that FCs themselves do not have repopulating capacity in vivo and post-TBI bone marrow was free of recipient HSCs under the supralethal dose of TBI. FCs significantly enhanced the efficiency of HSC homing as reflected by the bone marrow cells harvested from the mice transplanted with HSCs and FCs formed significantly higher numbers of colonies compared to that of the mice transplanted with HSCs alone (24.7 ± 2.9 vs. 15.6 ± 2.7; p < 0.05). The chemokine receptor CXCR4 plays a pivotal role in HSC homing. We therefore determined whether the effect of FCs on HSC homing was mediated by FCs increasing CXCR4 expression in HSC. CXCR4 expression in HSCs was measured by flow cytometry 18 hours after co-culture of HSCs and FCs in vitro. Incubation of FCs with HSCs did not lead to increased CXCR4 expression on HSCs compared with HSCs cultured alone. We next tested whether FCs enhance the responsiveness of HSCs to a low concentration of stromal cell-derived factor 1 (SDF-1, also known as CXCL12) gradient in Transwell chemotaxis assays in vitro. 500 HSCs were placed in the upper chamber and tested for migration of cells to the lower chamber of the Transwell in response to a 30 ng/ml SDF-1 gradient for 3 hours. The cells harvested from the lower chamber were placed in CFC assay. The migrated cells harvested from the lower chamber containing FCs formed 6-fold more colonies than HSCs obtained from the lower chamber that did not contain FC (22.3 ± 3.9 vs. 4.0 ± 1.2; p < 0.05). Furthermore, we found that small factions of total FCs were CXCL12-producing cells (2% of total FCs) and CD169+ cells (5% of total FCs). The migration ability of FCs was characterized by following patterns of homing after transplantation of 300,000 CellTracker Green labeled FCs or 300,000 FCs bearing different congenic marker. In 8,000,000 bone marrow cells harvested from femurs and tibias of the transplanted mice 18 hours post-transplantation, we detected 100 to 300 of transplanted CellTracker Green labeled FCs. On the 10 serial bone sections from femurs and tibias of the transplanted mice, we enumerated 15 to 20 of CellTracker Green labeled FCs. These data suggested that FCs might home to bone marrow within 18 hours post-transplantation. In summary, our results suggest that FCs enhance functional HSC homing and retention in the hematopoietic niche in vivo. This is not mediated by increased CXCR4 expression in HSCs. FCs also prime HSC migration to a low concentration SDF-1 gradient in vitro, possibly through production of priming factors. Disclosures Ildstad: Regenerex, LLC: Other.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5115-5115
Author(s):  
Emanuel Necas ◽  
Chia-Ling Chen ◽  
Katerina Faltusova ◽  
Ko-Tung Chang

Abstract Presence of the c-Kit tyrosine kinase receptor is a hallmark of the mouse hematopoietic stem cells (HSCs) and progenitors routinely used for their identification and separation. c-Kit is activated after binding of its ligand, the stem cell factor (SCF; c-Kit-ligand). c-Kit receptors with bound SCF form dimers that are rapidly internalized and degraded. This activates the c-Kit signaling pathways supporting cell survival, proliferation or quiescence and self-renewal. Although there is a consensus that c-Kit signaling is important for functioning of HSCs, published results are partly controversial. We have defined HSCs and progenitors as Lineage- Sca-1+c-Kit+ cells (LSK cells) and characterized them further by means of the CD150 and CD48 markers. We used anti-c-Kit antibody minus (FMO; Fluorescence Minus One) samples to distinguish between c-Kit+ and c-Kit- bone marrow cells and analyzed the distribution of c-Kit on the immature hematopoietic cells carrying different phenotypes. Further, we exposed bone marrow cells to a wide range of concentration of a recombinant mouse SCF in vitro and measured a change in c-Kit presence and distribution on these different cell types. Also, SCF was injected to mice in vivo and their bone marrow was similarly analyzed for a change in c-Kit expression. Bone marrow cells exposed to SCF concentrations that deeply down-regulated c-Kit receptors were transplanted to recipient mice, and their transplantation efficiency was compared to that of normal bone marrow. c-Kit was unevenly but characteristically distributed on different types of LSK CD150/CD48 cells, showing the highest and the most homogeneous density on cells with the LSK CD150+CD48- phenotype. Exposure of bone marrow cells to SCF in ranges of concentrations from 0.3-2000 ng/ml induced progressive down-regulation of c-Kit. However, the cells mostly remained c-Kit+(low). The response to SCF was the most prominent in a range of SCF concentrations between 1-100 ng/ml. Cells with the phenotype LSK CD150+CD48+were relative low-responders. In vivo administration of SCF to mice in doses exceeding 300 ng/mouse, either intraperitoneally or intravenously, had similar effect on c-Kit expression by bone marrow cells as their incubation with SCF in vitro. Next we investigated correlation of the intensity of c-Kit receptor expression on bone marrow cells with their repopulating capacity after transplantation. A significantly decreased c-Kit expression on transplanted cells, induced by exposure of the cells to SCF, did not decrease contribution of the cells to chimeric hematopoiesis in competitive transplantation assays. Formation of spleen colonies was also not affected in the CFU-S assay. Experiments which measured the effect of SCF administered to normal mice in vivo demonstrated an effect that lasted for less than 12 hours. c-Kit turnover on hematopoietic cells is thus rapid, and this fact may explain why down-regulation of c-Kit, on otherwise normal bone marrow cells, does not affect their capacity to be transplanted. In conclusion, c-Kit receptor density on hematopoietic cells does not appear to be a critical factor for the homing of transplanted hematopoietic stem and progenitor cells into the blood-forming tissues and their engraftment into specific niches. Also their performance in establishing productive hematopoiesis is not altered by the SCF-induced down-regulation of the c-Kit receptor density in time of their transplantation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1836-1841 ◽  
Author(s):  
M Kobayashi ◽  
BH Van Leeuwen ◽  
S Elsbury ◽  
ME Martinson ◽  
IG Young ◽  
...  

Abstract Human bone marrow cells cultured for 21 days in the presence of recombinant human interleukin-3 (IL-3) produced up to 28 times more colony-forming cells (CFC) than could be obtained from cultures stimulated with granulocyte colony stimulating factor (G-CSF) or granulocyte-macrophage CSF (GM-CSF). IL-3-cultured cells retained a multipotent response to IL-3 in colony assays but were restricted to formation of granulocyte colonies in G-CSF and granulocyte or macrophage colonies in GM-CSF. Culture of bone marrow cells in IL-3 also led to accumulation of large numbers of eosinophils and basophils. These data contrast with the effects of G-CSF, GM-CSF, and IL-3 in seven-day cultures. Here both GM-CSF and IL-3 amplified total CFC that had similar multipotential colony-forming capability in either factor. G-CSF, on the other hand, depleted IL-3-responsive colony-forming cells dramatically, apparently by causing these cells to mature into granulocytes. The data suggest that a large proportion of IL-3- responsive cells in human bone marrow express receptors for G-CSF and can respond to this factor, the majority becoming neutrophils. Furthermore, the CFC maintained for 21 days in IL-3 may be a functionally distinct population from that produced after seven days culture of bone marrow cells in either IL-3 or GM-CSF.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 700-704 ◽  
Author(s):  
Kimberly A. Gush ◽  
Kai-Ling Fu ◽  
Markus Grompe ◽  
Christopher E. Walsh

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital anomalies, and a predisposition to malignancy. FA cells demonstrate hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). Mice with a targeted disruption of the FANCC gene (fancc −/− nullizygous mice) exhibit many of the characteristic features of FA and provide a valuable tool for testing novel therapeutic strategies. We have exploited the inherent hypersensitivity offancc −/− hematopoietic cells to assay for phenotypic correction following transfer of the FANCC complementary DNA (cDNA) into bone marrow cells. Murine fancc −/− bone marrow cells were transduced with the use of retrovirus carrying the humanfancc cDNA and injected into lethally irradiated recipients. Mitomycin C (MMC) dosing, known to induce pancytopenia, was used to challenge the transplanted animals. Phenotypic correction was determined by assessment of peripheral blood counts. Mice that received cells transduced with virus carrying the wild-type gene maintained normal blood counts following MMC administration. All nullizygous control animals receiving MMC exhibited pancytopenia shortly before death. Clonogenic assay and polymerase chain reaction analysis confirmed gene transfer of progenitor cells. These results indicate that selective pressure promotes in vivo enrichment offancc-transduced hematopoietic stem/progenitor cells. In addition, MMC resistance coupled with detection of the transgene in secondary recipients suggests transduction and phenotypic correction of long-term repopulating stem cells.


Sign in / Sign up

Export Citation Format

Share Document