Role of arginine 180 and glutamic acid 177 of ricin toxin A chain in enzymatic inactivation of ribosomes

1990 ◽  
Vol 10 (12) ◽  
pp. 6257-6263
Author(s):  
A Frankel ◽  
P Welsh ◽  
J Richardson ◽  
J D Robertus

The gene for ricin toxin A chain was modified by site-specific mutagenesis to change arginine 180 to alanine, glutamine, methionine, lysine, or histidine. Separately, glutamic acid 177 was changed to alanine and glutamic acid 208 was changed to aspartic acid. Both the wild-type and mutant proteins were expressed in Escherichia coli and, when soluble, purified and tested quantitatively for enzyme activity. A positive charge at position 180 was found necessary for solubility of the protein and for enzyme activity. Similarly, a negative charge with a proper geometry in the vicinity of position 177 was critical for ricin toxin A chain catalysis. When glutamic acid 177 was converted to alanine, nearby glutamic acid 208 could largely substitute for it. This observation provided valuable structural information concerning the nature of second-site mutations.

1990 ◽  
Vol 10 (12) ◽  
pp. 6257-6263 ◽  
Author(s):  
A Frankel ◽  
P Welsh ◽  
J Richardson ◽  
J D Robertus

The gene for ricin toxin A chain was modified by site-specific mutagenesis to change arginine 180 to alanine, glutamine, methionine, lysine, or histidine. Separately, glutamic acid 177 was changed to alanine and glutamic acid 208 was changed to aspartic acid. Both the wild-type and mutant proteins were expressed in Escherichia coli and, when soluble, purified and tested quantitatively for enzyme activity. A positive charge at position 180 was found necessary for solubility of the protein and for enzyme activity. Similarly, a negative charge with a proper geometry in the vicinity of position 177 was critical for ricin toxin A chain catalysis. When glutamic acid 177 was converted to alanine, nearby glutamic acid 208 could largely substitute for it. This observation provided valuable structural information concerning the nature of second-site mutations.


1989 ◽  
Vol 9 (11) ◽  
pp. 5012-5021 ◽  
Author(s):  
D Schlossman ◽  
D Withers ◽  
P Welsh ◽  
A Alexander ◽  
J Robertus ◽  
...  

The gene for the A chain of ricin toxin was fused to a beta-galactosidase marker cistron via a DNA sequence encoding a short collagen linker, and the tripartite fusion protein was expressed in Escherichia coli. Site-specific mutagenesis was used to change glutamic acid residue 177 to aspartic acid or alanine. When the mutant proteins were expressed, purified, and tested quantitatively for enzymatic activity, the carboxylate function at position 177 was found not to be absolutely essential for ricin toxin A-chain catalysis.


1989 ◽  
Vol 9 (11) ◽  
pp. 5012-5021
Author(s):  
D Schlossman ◽  
D Withers ◽  
P Welsh ◽  
A Alexander ◽  
J Robertus ◽  
...  

The gene for the A chain of ricin toxin was fused to a beta-galactosidase marker cistron via a DNA sequence encoding a short collagen linker, and the tripartite fusion protein was expressed in Escherichia coli. Site-specific mutagenesis was used to change glutamic acid residue 177 to aspartic acid or alanine. When the mutant proteins were expressed, purified, and tested quantitatively for enzymatic activity, the carboxylate function at position 177 was found not to be absolutely essential for ricin toxin A-chain catalysis.


2012 ◽  
Vol 1 (3) ◽  
pp. 348-353 ◽  
Author(s):  
Katharine Epler ◽  
David Padilla ◽  
Genevieve Phillips ◽  
Peter Crowder ◽  
Robert Castillo ◽  
...  

2003 ◽  
Vol 77 (4) ◽  
pp. 2477-2488 ◽  
Author(s):  
Boriana Marintcheva ◽  
Sandra K. Weller

ABSTRACT UL9 is a multifunctional protein essential for herpes simplex virus type 1 (HSV-1) replication in vivo. UL9 is a member of the superfamily II helicases and exhibits helicase and origin-binding activities. It is thought that UL9 binds the origin of replication and unwinds it in the presence of ATP and the HSV-1 single-stranded DNA (ssDNA)-binding protein. We have previously characterized the biochemical properties of mutants in all helicase motifs except for motif Ia (B. Marintcheva and S. Weller, J. Biol. Chem. 276:6605-6615, 2001). Structural information for other superfamily I and II helicases indicates that motif Ia is involved in ssDNA binding. By analogy, we hypothesized that UL9 motif Ia is important for the ssDNA-binding function of the protein. On the basis of sequence conservation between several UL9 homologs within the Herpesviridae family and distant homology with helicases whose structures have been solved, we designed specific mutations in motif Ia and analyzed them genetically and biochemically. Mutant proteins with residues predicted to be involved in ssDNA binding (R112A and R113A/F115A) exhibited wild-type levels of intrinsic ATPase activity and moderate to severe defects in ssDNA-stimulated ATPase activity and ssDNA binding. The S110T mutation targets a residue not predicted to contact ssDNA directly. The mutant protein with this mutation exhibited wild-type levels of intrinsic ATPase activity and near wild-type levels of ssDNA-stimulated ATPase activity and ssDNA binding. All mutant proteins lack helicase activity but were able to dimerize and bind the HSV-1 origin of replication as well as wild-type UL9. Our results indicate that residues from motif Ia contribute to the ssDNA-binding and helicase activities of UL9 and are essential for viral growth. This work represents the successful application of an approach based on a combination of bioinformatics and structural information from related proteins to deduce valuable information about a protein of interest.


2005 ◽  
Vol 71 (2) ◽  
pp. 621-628 ◽  
Author(s):  
Zhi-Wei Chen ◽  
Cheng-Ying Jiang ◽  
Qunxin She ◽  
Shuang-Jiang Liu ◽  
Pei-Jin Zhou

ABSTRACT Analysis of known sulfur oxygenase-reductases (SORs) and the SOR-like sequences identified from public databases indicated that they all possess three cysteine residues within two conserved motifs (V-G-P-K-V-C31 and C101-X-X-C104; numbering according to the Acidianus tengchongensis numbering system). The thio-modifying reagent N-ethylmaleimide and Zn2+ strongly inhibited the activities of the SORs of A. tengchongensis, suggesting that cysteine residues are important. Site-directed mutagenesis was used to construct four mutant SORs with cysteines replaced by serine or alanine. The purified mutant proteins were investigated in parallel with the wild-type SOR. Replacement of any cysteine reduced SOR activity by 98.4 to 100%, indicating that all the cysteine residues are crucial to SOR activities. Circular-dichroism and fluorescence spectrum analyses revealed that the wild-type and mutant SORs have similar structures and that none of them form any disulfide bond. Thus, it is proposed that three cysteine residues, C31 and C101-X-X-C104, in the conserved domains constitute the putative binding and catalytic sites of SOR. Furthermore, enzymatic activity assays of the subcellular fractions and immune electron microscopy indicated that SOR is not only present in the cytoplasm but also associated with the cytoplasmic membrane of A. tengchongensis. The membrane-associated SOR activity was colocalized with the activities of sulfite:acceptor oxidoreductase and thiosulfate:acceptor oxidoreductase. We tentatively propose that these enzymes are located in close proximity on the membrane to catalyze sulfur oxidation in A. tengchongensis.


2008 ◽  
Vol 70 (6) ◽  
pp. 945-953 ◽  
Author(s):  
Setu Roday ◽  
Matthew B. Sturm ◽  
Dukagjin M. Blakaj ◽  
Vern L. Schramm

2003 ◽  
Vol 185 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Steven J. Kaczowka ◽  
Julie A. Maupin-Furlow

ABSTRACT Haloferax volcanii, a halophilic archaeon, synthesizes three different proteins (α1, α2, and β) which are classified in the 20S proteasome superfamily. The α1 and β proteins alone form active 20S proteasomes; the role of α2, however, is not clear. To address this, α2 was synthesized with an epitope tag and purified by affinity chromatography from recombinant H. volcanii. The α2 protein copurified with α1 and β in a complex with an overall structure and peptide-hydrolyzing activity comparable to those of the previously described α1-β proteasome. Supplementing buffers with 10 mM CaCl2 stabilized the halophilic proteasomes in the absence of salt and enabled them to be separated by native gel electrophoresis. This facilitated the discovery that wild-type H. volcanii synthesizes more than one type of 20S proteasome. Two 20S proteasomes, the α1-β and α1-α2-β proteasomes, were identified during stationary phase. Cross-linking of these enzymes, coupled with available structural information, suggested that the α1-β proteasome was a symmetrical cylinder with α1 rings on each end. In contrast, the α1-α2-β proteasome appeared to be asymmetrical with homo-oligomeric α1 and α2 rings positioned on separate ends. Inter-α-subunit contacts were only detected when the ratio of α1 to α2 was perturbed in the cell using recombinant technology. These results support a model that the ratio of α proteins may modulate the composition and subunit topology of 20S proteasomes in the cell.


Sign in / Sign up

Export Citation Format

Share Document