scholarly journals Defective regulation of mitogen-activated protein kinase activity in a 3T3 cell variant mitogenically nonresponsive to tetradecanoyl phorbol acetate.

1991 ◽  
Vol 11 (2) ◽  
pp. 1002-1008 ◽  
Author(s):  
G L'Allemain ◽  
T W Sturgill ◽  
M J Weber

Mitogen-activated protein (MAP) kinase is a serine/threonine-specific protein kinase which is activated in response to various mitogenic agonists (e.g., epidermal growth factor, insulin, and the tumor promoter tetradecanoyl phorbol acetate [TPA]) and requires both threonine and tyrosine phosphorylation for activity. This enzyme has recently been shown to be identical or closely related to pp42, a protein which becomes tyrosine phosphorylated in response to mitogenic stimulation. Neither the kinases which regulate MAP kinase/pp42 nor the in vivo substrates for this enzyme are known. Because MAP MAP kinase is activated and phosphorylated in response both to agents which stimulate tyrosine kinase receptors and to agents which stimulate protein kinase C, a serine/threonine kinase, we have examined the regulation and phosphorylation of this enzyme in 3T3-TNR9 cells, a variant cell line partially defective in protein kinase C-mediated signalling. In this communication, we show that in the 3T3-TNR9 variant cell line, TPA does not cause the characteristically rapid phosphorylation of pp42 or the activation and phosphorylation of MAP kinase. This defective response is not due to the absence of the MAP kinase/pp42 protein itself because both tyrosine phosphorylation of MAP kinase/pp42 and its enzymatic activation could be induced by platelet-derived growth factor in the 3T3-TNR9 cells. Thus, the defect in these variant cells apparently resides in some aspect of the regulation of MAP kinase phosphorylation. Since the 3T3-TNR9 cells are also defective with respect to the TPA-induced increase in ribosomal protein S6 kinase, these in vivo results reinforce the earlier in vitro finding that MAP kinase can regulate S6 kinase activity. These findings suggest a key role for MAP kinase in a kinase cascade cascade involved in the control of cell proliferation.

1991 ◽  
Vol 11 (2) ◽  
pp. 1002-1008
Author(s):  
G L'Allemain ◽  
T W Sturgill ◽  
M J Weber

Mitogen-activated protein (MAP) kinase is a serine/threonine-specific protein kinase which is activated in response to various mitogenic agonists (e.g., epidermal growth factor, insulin, and the tumor promoter tetradecanoyl phorbol acetate [TPA]) and requires both threonine and tyrosine phosphorylation for activity. This enzyme has recently been shown to be identical or closely related to pp42, a protein which becomes tyrosine phosphorylated in response to mitogenic stimulation. Neither the kinases which regulate MAP kinase/pp42 nor the in vivo substrates for this enzyme are known. Because MAP MAP kinase is activated and phosphorylated in response both to agents which stimulate tyrosine kinase receptors and to agents which stimulate protein kinase C, a serine/threonine kinase, we have examined the regulation and phosphorylation of this enzyme in 3T3-TNR9 cells, a variant cell line partially defective in protein kinase C-mediated signalling. In this communication, we show that in the 3T3-TNR9 variant cell line, TPA does not cause the characteristically rapid phosphorylation of pp42 or the activation and phosphorylation of MAP kinase. This defective response is not due to the absence of the MAP kinase/pp42 protein itself because both tyrosine phosphorylation of MAP kinase/pp42 and its enzymatic activation could be induced by platelet-derived growth factor in the 3T3-TNR9 cells. Thus, the defect in these variant cells apparently resides in some aspect of the regulation of MAP kinase phosphorylation. Since the 3T3-TNR9 cells are also defective with respect to the TPA-induced increase in ribosomal protein S6 kinase, these in vivo results reinforce the earlier in vitro finding that MAP kinase can regulate S6 kinase activity. These findings suggest a key role for MAP kinase in a kinase cascade cascade involved in the control of cell proliferation.


1993 ◽  
Vol 90 (23) ◽  
pp. 10952-10956 ◽  
Author(s):  
R H Chen ◽  
C Abate ◽  
J Blenis

Phosphorylation of the C terminus of c-Fos has been implicated in serum response element-mediated repression of c-fos transcription after its induction by serum growth factors. The growth-regulated enzymes responsible for this phosphorylation in early G1 phase of the cell cycle and the sites of phosphorylation have not been identified. We now provide evidence that two growth-regulated, nucleus- and cytoplasm-localized protein kinases, 90-kDa ribosomal S6 kinase (RSK) and mitogen-activated protein kinase (MAP kinase), contribute to the serum-induced phosphorylation of c-Fos. The major phosphopeptides derived from biosynthetically labeled c-Fos correspond to phosphopeptides generated after phosphorylation of c-Fos in vitro with both RSK and MAP kinase. The phosphorylation sites identified for RSK (Ser-362) and MAP kinase (Ser-374) are in the transrepression domain. Cooperative phosphorylation at these sites by both enzymes was observed in vitro and reflected in vivo by the predominance of the peptide phosphorylated on both sites, as opposed to singly phosphorylated peptides. This study suggests a role for nuclear RSK and MAP kinase in modulating newly synthesized c-Fos phosphorylation and downstream signaling.


2016 ◽  
Vol 310 (11) ◽  
pp. C921-C930 ◽  
Author(s):  
Danielle M. Trappanese ◽  
Sarah Sivilich ◽  
Hillevi K. Ets ◽  
Farah Kako ◽  
Michael V. Autieri ◽  
...  

Vascular smooth muscle contraction is primarily regulated by phosphorylation of myosin light chain. There are also modulatory pathways that control the final level of force development. We tested the hypothesis that protein kinase C (PKC) and mitogen-activated protein (MAP) kinase modulate vascular smooth muscle activity via effects on MAP kinase phosphatase-1 (MKP-1). Swine carotid arteries were mounted for isometric force recording and subjected to histamine stimulation in the presence and absence of inhibitors of PKC [bisindolylmaleimide-1 (Bis)], MAP kinase kinase (MEK) (U0126), and MKP-1 (sanguinarine) and flash frozen for measurement of MAP kinase, PKC-potentiated myosin phosphatase inhibitor 17 (CPI-17), and caldesmon phosphorylation levels. CPI-17 was phosphorylated in response to histamine and was inhibited in the presence of Bis. Caldesmon phosphorylation levels increased in response to histamine stimulation and were decreased in response to MEK inhibition but were not affected by the addition of Bis. Inhibition of PKC significantly increased p42 MAP kinase, but not p44 MAP kinase. Inhibition of MEK with U0126 inhibited both p42 and p44 MAP kinase activity. Inhibition of MKP-1 with sanguinarine blocked the Bis-dependent increase of MAP kinase activity. Sanguinarine alone increased MAP kinase activity due to its effects on MKP-1. Sanguinarine increased MKP-1 phosphorylation, which was inhibited by inhibition of MAP kinase. This suggests that MAP kinase has a negative feedback role in inhibiting MKP-1 activity. Therefore, PKC catalyzes MKP-1 phosphorylation, which is reversed by MAP kinase. Thus the fine tuning of vascular contraction is due to the concerted effort of PKC, MAP kinase, and MKP-1.


1992 ◽  
Vol 287 (2) ◽  
pp. 589-594 ◽  
Author(s):  
Y Wang ◽  
M S Simonson ◽  
J Pouysségur ◽  
M J Dunn

Mitogen-activated protein (MAP) kinases are regarded as switch kinases in the phosphorylation cascade initiated by various agonists. We have investigated whether endothelins (ET), which are constrictor and mitogenic isopeptides, can increase MAP kinase activity in rat mesangial cells, using bovine myelin basic protein (MBP) as a substrate for an in vitro kinase assay. Treatment of quiescent mesangial cells with ET-1 rapidly stimulated a kinase activity which phosphorylated exogenous MBP. This stimulation was dose-dependent, with threshold responses at 1 nM-ET-1. Epidermal growth factor and thrombin also activated this kinase in mesangial cells. We also examined the ET signal transduction pathways leading to activation of MBP kinase. Pertussis toxin had no effect on ET-stimulated MBP kinase activity. Stimulation of protein kinase C by phorbol ester increased MBP kinase activity, and down-regulation of PKC partially inhibited ET-stimulated MBP kinase as well as phorbol ester-stimulated MBP kinase activity. Interestingly, genestein, an inhibitor of protein tyrosine kinases, partially inhibited MBP kinase stimulated by ET but not by phorbol esters. These results suggest that ET stimulates MBP kinase activity in rat mesangial cells via at least two pathways: one which is protein kinase C-dependent and a second one that involves a protein tyrosine kinase. Finally, by raising rabbit antibodies against the two forms of MAP kinase, p44mapk and p42mapk, we demonstrated that both isoforms are expressed in mesangial cells. Antibody alpha 1 Cp42 specifically immunoprecipitated p42mapk and allowed us to demonstrate that ET stimulates MBP kinase activity in the p42mapk immunocomplex. In conclusion, we have provided evidence that, in rat mesangial cells, MAP kinases are rapidly activated by ET-1, a regulatory process that involves at least protein kinase C activation and also a contribution of a tyrosine kinase not yet characterized.


1995 ◽  
Vol 15 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Michael G. Thompson ◽  
Monique Pascal ◽  
Steven C. Mackie ◽  
Amanda Thom ◽  
Kenneth S. Morrison ◽  
...  

Insulin stimulated a concentration-dependent increase in protein synthesis in L6 myoblasts which was significant at 1 nM. This response was not prevented by the transcription inhibitor, actinomycin D. The protein kinase C (PKC) inhibitor, Ro-31-8220, and downregulation of PKC by prolonged incubation of cells with 12-O-tetradecanoylphorbol-13-acetate (TPA), had no effect on the ability of insulin to stimulate protein synthesis whilst completely blocking the response to TPA. In contrast, insulin failed to enhance protein synthesis significantly in the presence of either ibuprofen, a selective cyclooxygenase inhibitor or rapamycin, an inhibitor of the 70 kDa S6 kinase. When cell extracts were prepared and assayed for total myelin basic protein kinase activity, a stimulatory effect of insulin was not observed until the concentration approached 100-fold (i.e. 100 nM) that required to elicit increases in protein synthesis. Upon fractionation on a Mono-Q column, 100 nM insulin increased the activity of 3 peaks which phosphorylated myelin basic protein. Two of these peaks were identified as the 42 and 44 kDa forms of Mitogen Activated Protein (MAP) kinase by immunoblotting. In contrast, 1 nM insulin had no effect on the activity of these peaks. The data suggest that physiologically relevant concentrations of insulin do not stimulate translation in L6 cells through either PKC or the 42/44 kDa isoforms of MAP kinase and that this response is, at least in part, mediated through the activation of the 70 kDa S6 kinase by cyclooxygenase metabolites.


1993 ◽  
Vol 13 (5) ◽  
pp. 3067-3075 ◽  
Author(s):  
K S Lee ◽  
K Irie ◽  
Y Gotoh ◽  
Y Watanabe ◽  
H Araki ◽  
...  

Mitogen-activated protein (MAP) kinases are activated in response to a variety of stimuli through a protein kinase cascade that results in their phosphorylation on tyrosine and threonine residues. The molecular nature of this cascade is just beginning to emerge. Here we report the isolation of a Saccharomyces cerevisiae gene encoding a functional analog of mammalian MAP kinases, designated MPK1 (for MAP kinase). The MPK1 gene was isolated as a dosage-dependent suppressor of the cell lysis defect associated with deletion of the BCK1 gene. The BCK1 gene is also predicted to encode a protein kinase which has been proposed to function downstream of the protein kinase C isozyme encoded by PKC1. The MPK1 gene possesses a 1.5-kb uninterrupted open reading frame predicted to encode a 53-kDa protein. The predicted Mpk1 protein (Mpk1p) shares 48 to 50% sequence identity with Xenopus MAP kinase and with the yeast mating pheromone response pathway components, Fus3p and Kss1p. Deletion of MPK1 resulted in a temperature-dependent cell lysis defect that was virtually indistinguishable from that resulting from deletion of BCK1, suggesting that the protein kinases encoded by these genes function in a common pathway. Expression of Xenopus MAP kinase suppressed the defect associated with loss of MPK1 but not the mating-related defects associated with loss of FUS3 or KSS1, indicating functional conservation between the former two protein kinases. Mutation of the presumptive phosphorylated tyrosine and threonine residues of Mpk1p individually to phenylalanine and alanine, respectively, severely impaired Mpk1p function. Additional epistasis experiments, and the overall architectural similarity between the PKC1-mediated pathway and the pheromone response pathway, suggest that Pkc1p regulates a protein kinase cascade in which Bck1p activates a pair of protein kinases, designated Mkk1p and Mkk2p (for MAP kinase-kinase), which in turn activate Mpk1p.


1993 ◽  
Vol 13 (5) ◽  
pp. 3076-3083
Author(s):  
K Irie ◽  
M Takase ◽  
K S Lee ◽  
D E Levin ◽  
H Araki ◽  
...  

The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for normal growth and division of yeast cells. We report here the isolation of the yeast MKK1 and MKK2 (for mitogen-activated protein [MAP] kinase-kinase) genes which, when overexpressed, suppress the cell lysis defect of a temperature-sensitive pkc1 mutant. The MKK genes encode protein kinases most similar to the STE7 product of S. cerevisiae, the byr1 product of Schizosaccharomyces pombe, and vertebrate MAP kinase-kinases. Deletion of either MKK gene alone did not cause any apparent phenotypic defects, but deletion of both MKK1 and MKK2 resulted in a temperature-sensitive cell lysis defect that was suppressed by osmotic stabilizers. This phenotypic defect is similar to that associated with deletion of the BCK1 gene, which is thought to function in the pathway mediated by PCK1. The BCK1 gene also encodes a predicted protein kinase. Overexpression of MKK1 suppressed the growth defect caused by deletion of BCK1, whereas an activated allele of BCK1 (BCK1-20) did not suppress the defect of the mkk1 mkk2 double disruption. Furthermore, overexpression of MPK1, which encodes a protein kinase closely related to vertebrate MAP kinases, suppressed the defect of the mkk1 mkk2 double mutant. These results suggest that MKK1 and MKK2 function in a signal transduction pathway involving the protein kinases encoded by PKC1, BCK1, and MPK1. Genetic epistasis experiments indicated that the site of action for MKK1 and MKK2 is between BCK1 and MPK1.


1999 ◽  
Vol 54 (3-4) ◽  
pp. 285-294 ◽  
Author(s):  
Q. Y. Sun ◽  
Y. Lax ◽  
S. Rubinstein ◽  
D. Y. Chen ◽  
H. Breitbart

Abstract A very sensitive method was established for detecting the activity of mitogen-activated protein (MAP) kinase in mouse eggs, and used to follow temporal changes of this kinase during fertilization and sponatenous or chemically-induced parthenogenic activation. MAP kinase activity increased between 1 and 2.5 h post-insemination, at which time the second polar body was emitted and sperm chromatin was dispersed; its activity decreased sharply at 8 h, when pronuclei were formed. Both calcium ionophore A23187 and ethanol simulta­ neously induced pronuclear formation and MAP kinase inactivation in aged eggs 8 h after incubation but less effectively in fresh eggs. The protein kinase inhibitor staurosporine in­duced pronuclear formation and MAP kinase inactivation more quickly than other treat­ ments, with MAP kinase inactivation occurring slightly proceeding pronuclear formation. Okadaic acid, a specific inhibitor of protein phosphatase 1 and 2A , induced increase in MAP kinase activity, and overcame pronuclear formation induced by various stimuli. MAP kinase inactivation preceded pronuclear formation in eggs spontaneously activated by aging in vitro, perhaps due to cytoplasmic degeneration and thus delayed response of nuclear envelope precursors to MAP kinase inactivation. These data suggest that MAP kinase is a key protein kinase regulating the events of mouse egg activation. Increased MAP kinase activity is temporally correlated with the second polar body emission and sperm chromatin decondensation. Although different stimuli (including sperm) may initially act through different mechanisms, they finally inactivate MAP kinase, probably by allowing the action of protein phosphatase, and thus induces the transition to interphase.


1993 ◽  
Vol 289 (1) ◽  
pp. 283-287 ◽  
Author(s):  
L Pang ◽  
S J Decker ◽  
A R Saltiel

Both bombesin and epidermal growth factor (EGF) are potent mitogens in Swiss 3T3 cells that nonetheless have dissimilar receptor structures. To explore possible common intracellular events involved in the stimulation of cellular growth by these two peptides, we have evaluated the regulation of the mitogen-activated protein (MAP) kinase. Exposure of Swiss 3T3 cells to bombesin, EGF or the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) causes the rapid and transient stimulation of the enzyme activity. Pretreatment of cells with the protein kinase inhibitor H-7, or down-regulation of cellular protein kinase C by prolonged exposure to PMA, causes a decrease of over 90% in the activation of MAP kinase by bombesin. In contrast, these treatments have no effect on the stimulation of MAP kinase by EGF. The stimulation of MAP kinase activity by bombesin is dose-dependent, occurring over a narrow concentration range of the peptide. Both EGF and bombesin stimulate the phosphorylation of an immunoprecipitable MAP kinase protein migrating at 42 kDa on SDS/PAGE. Phosphoamino acid analysis of this phosphorylated protein reveals that EGF and bombesin stimulate phosphorylation on tyrosine, threonine and serine residues. Tyrosine phosphorylation of the enzyme, as evaluated by antiphosphotyrosine blotting of the immunoprecipitated protein, reveals that the time course of phosphorylation by both mitogens correlates with stimulation of enzyme activity. These results provide further evidence for the convergence of discrete pathways emanating from tyrosine kinase and G-protein-linked receptors in the regulation of MAP kinase.


1994 ◽  
Vol 267 (3) ◽  
pp. G401-G408 ◽  
Author(s):  
R. D. Duan ◽  
J. A. Williams

The existence and activation of mitogen-activated protein (MAP) kinase in isolated pancreatic acini have been demonstrated. Immunoblotting and immunoprecipitation revealed two forms of MAP kinase in pancreatic acini, with relative molecular masses of approximately 42 and 44 kDa. Both forms of MAP kinase were activated by cholecystokinin (CCK). The threshold concentration of CCK was approximately 3 pM, and the maximal effect occurred at 1 nM, which enhanced MAP kinase activity by 2.5-fold, as determined in polyacrylamide gel copolymerized with substrate myelin basic protein. Activation of MAP kinase by CCK was rapid, reaching a maximum within 5-10 min that subsequently declined. Bombesin and carbachol but not secretin or vasoactive intestinal peptide also activated MAP kinase. CCK-induced activation of MAP kinase may be mediated by protein kinase C, since 12-O-tetradecanoylphorbol 13-acetate (TPA) mimicked the effect of CCK and staurosporine concentration dependently inhibited the action of CCK. Treatment of acini with thapsigargin, ionomycin, or ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid did not influence MAP kinase, indicating that mobilization of intracellular calcium by CCK is not important in activation of acinar MAP kinase. CCK and TPA increased tyrosine phosphorylation of both 42- and 44-kDa forms. Genistein and tyrphostin 23, the inhibitors of tyrosine kinase, suppressed the activation of MAP kinase by CCK. In conclusion, MAP kinase in pancreatic acini is activated by agonists related to hydrolysis of phosphoinositide, via a mechanism involving protein kinase C and tyrosine kinase.


Sign in / Sign up

Export Citation Format

Share Document