Tyrosine phosphorylation of a 120-kilodalton pp60src substrate upon epidermal growth factor and platelet-derived growth factor receptor stimulation and in polyomavirus middle-T-antigen-transformed cells

1991 ◽  
Vol 11 (2) ◽  
pp. 713-720
Author(s):  
S B Kanner ◽  
A B Reynolds ◽  
J T Parsons

The monoclonal antibody 2B12 is directed toward p120, a 120-kDa cellular protein originally identified as a protein tyrosine kinase substrate in cells expressing membrane-associated oncogenic variants of pp60src. In this report, we show that p120 was tyrosine phosphorylated in avian cells expressing membrane-associated, enzymatically activated variants of c-src, including variants having structural alterations in the src homology regions 2 and 3. In contrast, p120 was not tyrosine phosphorylated in cells expressing enzymatically activated, nonmyristylated pp60src. Furthermore, p120 was tyrosine phosphorylated in avian cells expressing middle T antigen, the transforming protein of polyomavirus, as well as in rodent cells stimulated with either epidermal growth factor (EGF) or platelet-derived growth factor. Analysis of the time course of p120 tyrosine phosphorylation in EGF-stimulated cells revealed a rapid onset of tyrosine phosphorylation. In addition, both the extent and duration of p120 phosphorylation increased when cells overexpressing the EGF receptor were stimulated with EGF. Biochemical analysis showed that p120 (in both normal and src-transformed cells) was membrane associated, was myristylated, and was phosphorylated on serine and threonine residues. Hence, p120 appears to be a substrate of both nonreceptor- and ligand-activated transmembrane receptor tyrosine kinases and of serine/threonine kinases and is perhaps a component of both mitogen-stimulated and tyrosine kinase oncogene-induced signaling pathways.

1991 ◽  
Vol 11 (2) ◽  
pp. 713-720 ◽  
Author(s):  
S B Kanner ◽  
A B Reynolds ◽  
J T Parsons

The monoclonal antibody 2B12 is directed toward p120, a 120-kDa cellular protein originally identified as a protein tyrosine kinase substrate in cells expressing membrane-associated oncogenic variants of pp60src. In this report, we show that p120 was tyrosine phosphorylated in avian cells expressing membrane-associated, enzymatically activated variants of c-src, including variants having structural alterations in the src homology regions 2 and 3. In contrast, p120 was not tyrosine phosphorylated in cells expressing enzymatically activated, nonmyristylated pp60src. Furthermore, p120 was tyrosine phosphorylated in avian cells expressing middle T antigen, the transforming protein of polyomavirus, as well as in rodent cells stimulated with either epidermal growth factor (EGF) or platelet-derived growth factor. Analysis of the time course of p120 tyrosine phosphorylation in EGF-stimulated cells revealed a rapid onset of tyrosine phosphorylation. In addition, both the extent and duration of p120 phosphorylation increased when cells overexpressing the EGF receptor were stimulated with EGF. Biochemical analysis showed that p120 (in both normal and src-transformed cells) was membrane associated, was myristylated, and was phosphorylated on serine and threonine residues. Hence, p120 appears to be a substrate of both nonreceptor- and ligand-activated transmembrane receptor tyrosine kinases and of serine/threonine kinases and is perhaps a component of both mitogen-stimulated and tyrosine kinase oncogene-induced signaling pathways.


1991 ◽  
Vol 11 (1) ◽  
pp. 309-321 ◽  
Author(s):  
W J Wasilenko ◽  
D M Payne ◽  
D L Fitzgerald ◽  
M J Weber

Because functionally significant substrates for the tyrosyl protein kinase activity of pp60v-src are likely to include membrane-associated proteins involved in normal growth control, we have tested the hypothesis that pp60v-src could phosphorylate and alter the signaling activity of transmembrane growth factor receptors. We have found that the epidermal growth factor (EGF) receptor becomes constitutively phosphorylated on tyrosine in cells transformed by the src oncogene and in addition displays elevated levels of phosphoserine and phosphothreonine. High-performance liquid chromatography phosphopeptide mapping revealed two predominant sites of tyrosine phosphorylation, both of which differed from the major sites of receptor autophosphorylation; thus, the src-induced phosphorylation is unlikely to occur via an autocrine mechanism. To determine whether pp60v-src altered the signaling activity of the EGF receptor, we analyzed the tyrosine phosphorylation of phospholipase C-gamma, since phosphorylation of this enzyme occurs in response to activation of the EGF receptor but not in response to pp60v-src alone. We found that in cells coexpressing pp60v-src and the EGF receptor, phospholipase C-gamma was constitutively phosphorylated, a result we interpret as indicating that the signaling activity of the EGF receptor was altered in the src-transformed cells. These findings suggest that pp60v-src-induced alterations in phosphorylation and function of growth regulatory receptors could play an important role in generating the phenotypic changes associated with malignant transformation.


1991 ◽  
Vol 2 (8) ◽  
pp. 663-673 ◽  
Author(s):  
R Campos-González ◽  
J R Glenney

Treatment of normal human fibroblasts with epidermal growth factor (EGF) results in the rapid (0.5 min) and simultaneous tyrosine phosphorylation of the EGF receptor (EGFr) and several other proteins. An exception to this tyrosine phosphorylation wave was a protein (42 kDa) that became phosphorylated on tyrosine only after a short lag time (5 min). We identified this p42 kDa substrate as the microtubule-associated protein (MAP) kinase using a monoclonal antibody to a peptide corresponding to the C-terminus of the predicted protein (Science 249, 64-67, 1990). EGF treatment of human fibroblasts at 37 degrees C for 5 min resulted in the tyrosine phosphorylation of 60-70% of MAP kinase as determined by the percent that was immunoprecipitated with antiphosphotyrosine antibodies. Like other tyrosine kinase growth factor receptors, the EGFr is activated and phosphorylated at 4 degrees C but is not internalized. Whereas most other substrates were readily tyrosine phosphorylated at 4 degrees C, MAP kinase was not. When cells were first stimulated with EGF at 4 degrees C and then warmed to 37 degrees C without EGF, tyrosine phosphorylation of MAP kinase was again observed. Treatment of cells with the protein kinase C activator phorbol myristate acetate (PMA) also resulted in the tyrosine phosphorylation of MAP kinase, and again only at 37 degrees C. Tryptic phosphopeptide maps demonstrated that EGF and PMA both induced the phosphorylation of the same peptide on tyrosine and threonine. This temperature and PMA sensitivity distinguishes MAP kinase from most other tyrosine kinase substrates in activated human fibroblasts.


1991 ◽  
Vol 11 (2) ◽  
pp. 945-953 ◽  
Author(s):  
A H Bouton ◽  
S B Kanner ◽  
R R Vines ◽  
H C Wang ◽  
J B Gibbs ◽  
...  

GTPase-activating protein (GAP) is a cytosolic protein that stimulates the rate of hydrolysis of GTP (GTP to GDP) bound to normal p21ras, but does not catalyze the hydrolysis of GTP bound to oncogenic, activated forms of the ras protein. Transformation of cells with v-src or activated transforming variants of c-src or stimulation of cells with epidermal growth factor resulted in the stable association of GAP with two tyrosine-phosphorylated cellular proteins of 64 kDa (p64) and 190 kDa (p190). Analysis of GAP immune complexes isolated from extracts of metabolically labeled src-transformed cells and epidermal growth factor-stimulated cells indicated that tyrosine phosphorylation of p64 and p190 appeared to be coincident with the stable association of these proteins with GAP. Quantitation of the amount of p64 associated with GAP in v-src-transformed cells, however, indicated that only 15 to 25% of tyrosine-phosphorylated p64 was found in complex with GAP. Mutations within the SH2 region of pp60src that render activated pp60src defective for transformation inhibited the efficient formation of complexes between GAP and the tyrosine-phosphorylated forms of p64 and p190. From these data, we suggest that tyrosine phosphorylation and stable association of p64 with GAP is an important step in mediating cellular signaling through the p21ras-GAP pathway.


1986 ◽  
Vol 6 (7) ◽  
pp. 2745-2751
Author(s):  
C M Isacke ◽  
I S Trowbridge ◽  
T Hunter

We have characterized two monoclonal antibodies which recognize human p36. These have been used to examine the sites and extent of serine and tyrosine phosphorylation of p36 in human cells treated with epidermal growth factor and platelet-derived growth factor and in human cells transformed with viruses whose oncogenes encode protein-tyrosine kinases.


1991 ◽  
Vol 11 (2) ◽  
pp. 945-953
Author(s):  
A H Bouton ◽  
S B Kanner ◽  
R R Vines ◽  
H C Wang ◽  
J B Gibbs ◽  
...  

GTPase-activating protein (GAP) is a cytosolic protein that stimulates the rate of hydrolysis of GTP (GTP to GDP) bound to normal p21ras, but does not catalyze the hydrolysis of GTP bound to oncogenic, activated forms of the ras protein. Transformation of cells with v-src or activated transforming variants of c-src or stimulation of cells with epidermal growth factor resulted in the stable association of GAP with two tyrosine-phosphorylated cellular proteins of 64 kDa (p64) and 190 kDa (p190). Analysis of GAP immune complexes isolated from extracts of metabolically labeled src-transformed cells and epidermal growth factor-stimulated cells indicated that tyrosine phosphorylation of p64 and p190 appeared to be coincident with the stable association of these proteins with GAP. Quantitation of the amount of p64 associated with GAP in v-src-transformed cells, however, indicated that only 15 to 25% of tyrosine-phosphorylated p64 was found in complex with GAP. Mutations within the SH2 region of pp60src that render activated pp60src defective for transformation inhibited the efficient formation of complexes between GAP and the tyrosine-phosphorylated forms of p64 and p190. From these data, we suggest that tyrosine phosphorylation and stable association of p64 with GAP is an important step in mediating cellular signaling through the p21ras-GAP pathway.


1997 ◽  
Vol 272 (5) ◽  
pp. G1276-G1284 ◽  
Author(s):  
A. Piiper ◽  
D. Stryjek-Kaminska ◽  
S. Zeuzem

In the present study, isolated pancreatic acinar membranes were used to investigate the mechanism of epidermal growth factor (EGF)-induced activation of phospholipase C (PLC). The data show that EGF caused a rapid and strong increase in tyrosine phosphorylation of the EGF receptor, with a maximum 5-15 s after the beginning of the incubation followed by a decline. With use of [3H]phosphatidylinositol 4,5-bisphosphate as an exogenous substrate, PLC activity increased fourfold on exposure of the membranes to EGF (85 nM). In contrast, EGF-induced tyrosine phosphorylation of PLC-gamma 1 was rather small, indicating that tyrosine phosphorylation of PLC-gamma 1 is not proportional to changes in PLC activity. EGF-induced activation of PLC was strongly inhibited by pretreatment of the membranes with pertussis toxin, by an antibody raised against a COOH-terminal sequence shared by alpha-subunits of the inhibitory G proteins G(i)1 and G(i)2, and by an anti-PLC-gamma 1 antibody, whereas anti-G(i) alpha 3, anti-Gq/11 alpha, and anti-PLC-beta 1 antibodies had no effect. In contrast, pertussis toxin or the anti-G(i) alpha 1-2 antibody had no effect on EGF-induced tyrosine phosphorylation of PLC-gamma 1. EGF promoted association of G(i) proteins with both the EGF receptor and PLC-gamma 1 with similar kinetics as EGF-receptor autophosphorylation. All EGF-induced responses were abolished by the specific tyrosine kinase inhibitor pp60v-arc (137-157), suggesting that EGF-receptor tyrosine kinase activity is essential for G(i)1-2-mediated activation of PLC-gamma 1. However, there was no evidence of tyrosine phosphorylation of G(i) alpha 1-2. Taken together, these data show that EGF causes activation of PLC-gamma 1 by a mechanism requiring activation of G(i)1-2 and only a small increase in tyrosine phosphorylation of PLC-gamma 1.


Sign in / Sign up

Export Citation Format

Share Document