Expression of the murine alpha B-crystallin gene in lens and skeletal muscle: identification of a muscle-preferred enhancer

1991 ◽  
Vol 11 (9) ◽  
pp. 4340-4349
Author(s):  
R A Dubin ◽  
R Gopal-Srivastava ◽  
E F Wawrousek ◽  
J Piatigorsky

The alpha B-crystallin gene is expressed at high levels in lens and at lower levels in some other tissues, notably skeletal and cardiac muscle, kidney, lung, and brain. A promoter fragment of the murine alpha B-crystallin gene extending from positions -661 to +44 and linked to the bacterial chloramphenicol acetyltransferase (CAT) gene showed preferential expression in lens and skeletal muscle in transgenic mice. Transfection experiments revealed that a region between positions -426 and -257 is absolutely required for expression in C2C12 and G8 myotubes, while sequences downstream from position -115 appear to be determinants for lens expression. In association with a heterologous promoter, a -427 to -259 fragment functions as a strong enhancer in C2C12 myotubes and less efficiently in myoblasts and lens. Gel shift and methylation interference studies demonstrated that nuclear proteins from C2C12 myoblasts and myotubes specifically bind to the enhancer.

1991 ◽  
Vol 11 (9) ◽  
pp. 4340-4349 ◽  
Author(s):  
R A Dubin ◽  
R Gopal-Srivastava ◽  
E F Wawrousek ◽  
J Piatigorsky

The alpha B-crystallin gene is expressed at high levels in lens and at lower levels in some other tissues, notably skeletal and cardiac muscle, kidney, lung, and brain. A promoter fragment of the murine alpha B-crystallin gene extending from positions -661 to +44 and linked to the bacterial chloramphenicol acetyltransferase (CAT) gene showed preferential expression in lens and skeletal muscle in transgenic mice. Transfection experiments revealed that a region between positions -426 and -257 is absolutely required for expression in C2C12 and G8 myotubes, while sequences downstream from position -115 appear to be determinants for lens expression. In association with a heterologous promoter, a -427 to -259 fragment functions as a strong enhancer in C2C12 myotubes and less efficiently in myoblasts and lens. Gel shift and methylation interference studies demonstrated that nuclear proteins from C2C12 myoblasts and myotubes specifically bind to the enhancer.


2004 ◽  
Vol 13 (22) ◽  
pp. 2853-2862 ◽  
Author(s):  
Yves De Repentigny ◽  
Philip Marshall ◽  
Ronald G. Worton ◽  
Rashmi Kothary

1996 ◽  
Vol 16 (4) ◽  
pp. 1649-1658 ◽  
Author(s):  
D B Donoviel ◽  
M A Shield ◽  
J N Buskin ◽  
H S Haugen ◽  
C H Clegg ◽  
...  

Regulatory regions of the mouse muscle creatine kinase (MCK) gene, previously discovered by analysis in cultured muscle cells, were analyzed in transgenic mice. The 206-bp MCK enhancer at nt-1256 was required for high-level expression of MCK-chloramphenicol acetyltransferase fusion genes in skeletal and cardiac muscle; however, unlike its behavior in cell culture, inclusion of the 1-kb region of DNA between the enhancer and the basal promoter produced a 100-fold increase in skeletal muscle activity. Analysis of enhancer control elements also indicated major differences between their properties in transgenic muscles and in cultured muscle cells. Transgenes in which the enhancer right E box or CArG element were mutated exhibited expression levels that were indistinguishable from the wild-type transgene. Mutation of three conserved E boxes in the MCK 1,256-bp 5' region also had no effect on transgene expression in thigh skeletal muscle expression. All these mutations significantly reduced activity in cultured skeletal myocytes. However, the enhancer AT-rich element at nt - 1195 was critical for expression in transgenic skeletal muscle. Mutation of this site reduced skeletal muscle expression to the same level as transgenes lacking the 206-bp enhancer, although mutation of the AT-rich site did not affect cardiac muscle expression. These results demonstrate clear differences between the activity of MCK regulatory regions in cultured muscles cells and in whole adult transgenic muscle. This suggests that there are alternative mechanism of regulating the MCK gene in skeletal and cardiac muscle under different physiological states.


1996 ◽  
Vol 318 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Wolfgang SATTLER ◽  
Sanja LEVAK-FRANK ◽  
Herbert RADNER ◽  
Gerhard M. KOSTNER ◽  
Rudolf ZECHNER

Lipoprotein lipase (LPL) has been implicated in the delivery of chylomicron-located α-tocopherol (α-TocH) to peripheral tissues. To investigate the role of LPL in the cellular uptake of α-TocH in peripheral tissue in vivo, three lines of transgenic mice [mouse creatine kinase- (MCK) L, MCK-M and MCK-H] expressing various amounts of human LPL were compared with regard to α-TocH levels in plasma, skeletal muscle, cardiac muscle, adipose tissue and brain. Depending on the copy number of the transgene, LPL activity was increased 3- to 27-fold in skeletal muscle and 1.3- to 3.7-fold in cardiac muscle. The intracellular levels of α-TocH in skeletal muscle were significantly increased in MCK-M and MCK-H animals and correlated highly with the tissue-specific LPL activity (r = 0.998). The highest levels were observed in MCK-H (21.4 nmol/g) followed by MCK-M (13.3 nmol/g) and MCK-L (8.2 nmol/g) animals when compared with control mice (7.3 nmol/g). Excellent correlation was also observed between intracellular α-TocH and non-esterified fatty acid (NEFA) levels (r = 0.998). Although LPL activities in cardiac muscle were also increased in the transgenic mouse lines, α-TocH concentrations in the heart remained unchanged. Similarly, α-TocH levels in plasma, adipose tissue and brain were unaffected by the tissue specific overexpression of LPL in muscle. The transgenic model presented in this report provides evidence that the uptake of α-TocH in muscle is directly dependent on the level of LPL expression in vivo. Increased intracellular α-TocH concentrations with increased triglyceride lipolysis and NEFA uptake might protect the myocyte from oxidative damage during increased β-oxidation.


1989 ◽  
Vol 9 (8) ◽  
pp. 3393-3399 ◽  
Author(s):  
J E Johnson ◽  
B J Wold ◽  
S D Hauschka

Muscle creatine kinase (MCK) is expressed at high levels only in skeletal and cardiac muscle tissues. Previous in vitro transfection studies of skeletal muscle myoblasts and fibroblasts had identified two MCK enhancer elements and one proximal promoter element, each of which exhibited expression only in differentiated skeletal muscle. In this study, we have identified several regions of the mouse MCK gene that are responsible for tissue-specific expression in transgenic mice. A fusion gene containing 3,300 nucleotides of MCK 5' sequence exhibited chloramphenicol acetyltransferase activity levels that were more than 10(4)-fold higher in skeletal muscle than in other, nonmuscle tissues such as kidney, liver, and spleen. Expression in cardiac muscle was also greater than in these nonmuscle tissues by 2 to 3 orders of magnitude. Progressive 5' deletions from nucleotide -3300 resulted in reduced expression of the transgene, and one of these resulted in a preferential decrease in expression in cardiac tissue relative to that in skeletal muscle. Of the two enhancer sequences analyzed, only one directed high-level expression in both skeletal and cardiac muscle. The other enhancer activated expression only in skeletal muscle. These data reveal a complex set of cis-acting sequences that have differential effects on MCK expression in skeletal and cardiac muscle.


1989 ◽  
Vol 9 (8) ◽  
pp. 3393-3399
Author(s):  
J E Johnson ◽  
B J Wold ◽  
S D Hauschka

Muscle creatine kinase (MCK) is expressed at high levels only in skeletal and cardiac muscle tissues. Previous in vitro transfection studies of skeletal muscle myoblasts and fibroblasts had identified two MCK enhancer elements and one proximal promoter element, each of which exhibited expression only in differentiated skeletal muscle. In this study, we have identified several regions of the mouse MCK gene that are responsible for tissue-specific expression in transgenic mice. A fusion gene containing 3,300 nucleotides of MCK 5' sequence exhibited chloramphenicol acetyltransferase activity levels that were more than 10(4)-fold higher in skeletal muscle than in other, nonmuscle tissues such as kidney, liver, and spleen. Expression in cardiac muscle was also greater than in these nonmuscle tissues by 2 to 3 orders of magnitude. Progressive 5' deletions from nucleotide -3300 resulted in reduced expression of the transgene, and one of these resulted in a preferential decrease in expression in cardiac tissue relative to that in skeletal muscle. Of the two enhancer sequences analyzed, only one directed high-level expression in both skeletal and cardiac muscle. The other enhancer activated expression only in skeletal muscle. These data reveal a complex set of cis-acting sequences that have differential effects on MCK expression in skeletal and cardiac muscle.


2007 ◽  
Vol 81 (9) ◽  
pp. 4615-4624 ◽  
Author(s):  
Wendy M. Dlakic ◽  
Eric Grigg ◽  
Richard A. Bessen

ABSTRACT The prion agent has been detected in skeletal muscle of humans and animals with prion diseases. Here we report scrapie infection of murine C2C12 myoblasts and myotubes in vitro following coculture with a scrapie-infected murine neuroblastoma (N2A) cell line but not following incubation with a scrapie-infected nonneuronal cell line or a scrapie brain homogenate. Terminal differentiation of scrapie-infected C2C12 myoblasts into myotubes resulted in an increase in the expression of the disease-specific prion protein, PrPSc. The amount of scrapie infectivity or PrPSc in C2C12 myotubes was comparable to the levels found in scrapie-infected N2A cells, indicating that a high level of infection was established in muscle cells. Subclones of scrapie-infected C2C12 cells produced high levels of PrPSc in myotubes, and the C-terminal C2 polypeptide fragment of PrPSc was found based on deglycosylation and PrPSc-specific immunoprecipitation of cell lysates. This is the first report of a stable prion infection in muscle cells in vitro and of a long-term prion infection in a nondividing, differentiated peripheral cell type in culture. These in vitro studies also suggest that in vivo prion infection of skeletal muscle requires contact with prion-infected neurons or, possibly, nerve terminals.


2000 ◽  
Vol 278 (3) ◽  
pp. R705-R711 ◽  
Author(s):  
T. A. McAllister ◽  
J. R. Thompson ◽  
S. E. Samuels

The effect of long-term cold exposure on skeletal and cardiac muscle protein turnover was investigated in young growing animals. Two groups of 36 male 28-day-old rats were maintained at either 5°C (cold) or 25°C (control). Rates of protein synthesis and degradation were measured in vivo on days 5, 10, 15, and 20. Protein mass by day 20 was ∼28% lower in skeletal muscle (gastrocnemius and soleus) and ∼24% higher in heart in cold compared with control rats ( P < 0.05). In skeletal muscle, the fractional rates of protein synthesis ( k syn) and degradation ( k deg) were not significantly different between cold and control rats, although k syn was lower (approximately −26%) in cold rats on day 5; consequent to the lower protein mass, the absolute rates of protein synthesis (approximately −21%; P < 0.05) and degradation (approximately −13%; P < 0.1) were lower in cold compared with control rats. In heart, overall, k syn(approximately +12%; P < 0.1) and k deg(approximately +22%; P < 0.05) were higher in cold compared with control rats; consequently, the absolute rates of synthesis (approximately +44%) and degradation (approximately +54%) were higher in cold compared with control rats ( P < 0.05). Plasma triiodothyronine concentration was higher ( P < 0.05) in cold compared with control rats. These data indicate that long-term cold acclimation in skeletal muscle is associated with the establishment of a new homeostasis in protein turnover with decreased protein mass and normal fractional rates of protein turnover. In heart, unlike skeletal muscle, rates of protein turnover did not appear to immediately return to normal as increased rates of protein turnover were observed beyond day 5. These data also indicate that increased rates of protein turnover in skeletal muscle are unlikely to contribute to increased metabolic heat production during cold acclimation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takaaki Higashihara ◽  
Hiroshi Nishi ◽  
Koji Takemura ◽  
Hiroshi Watanabe ◽  
Toru Maruyama ◽  
...  

AbstractIn patients with chronic kidney disease, skeletal muscle dysfunction is associated with mortality. Uremic sarcopenia is caused by ageing, malnutrition, and chronic inflammation, but the molecular mechanism and potential therapeutics have not been fully elucidated yet. We hypothesize that accumulated uremic toxins might exert a direct deteriorative effect on skeletal muscle and explore the pharmacological treatment in experimental animal and culture cell models. The mice intraperitoneally injected with indoxyl sulfate (IS) after unilateral nephrectomy displayed an elevation of IS concentration in skeletal muscle and a reduction of instantaneous muscle strength, along with the predominant loss of fast-twitch myofibers and intramuscular reactive oxygen species (ROS) generation. The addition of IS in the culture media decreased the size of fully differentiated mouse C2C12 myotubes as well. ROS accumulation and mitochondrial dysfunction were also noted. Next, the effect of the β2-adrenergic receptor (β2-AR) agonist, clenbuterol, was evaluated as a potential treatment for uremic sarcopenia. In mice injected with IS, clenbuterol treatment increased the muscle mass and restored the tissue ROS level but failed to improve muscle weakness. In C2C12 myotubes stimulated with IS, although β2-AR activation also attenuated myotube size reduction and ROS accumulation as did other anti-oxidant reagents, it failed to augment the mitochondrial membrane potential. In conclusion, IS provokes muscular strength loss (uremic dynapenia), ROS generation, and mitochondrial impairment. Although the β2-AR agonist can increase the muscular mass with ROS reduction, development of therapeutic interventions for restoring skeletal muscle function is still awaited.


Sign in / Sign up

Export Citation Format

Share Document