scholarly journals Prion Infection of Muscle Cells In Vitro

2007 ◽  
Vol 81 (9) ◽  
pp. 4615-4624 ◽  
Author(s):  
Wendy M. Dlakic ◽  
Eric Grigg ◽  
Richard A. Bessen

ABSTRACT The prion agent has been detected in skeletal muscle of humans and animals with prion diseases. Here we report scrapie infection of murine C2C12 myoblasts and myotubes in vitro following coculture with a scrapie-infected murine neuroblastoma (N2A) cell line but not following incubation with a scrapie-infected nonneuronal cell line or a scrapie brain homogenate. Terminal differentiation of scrapie-infected C2C12 myoblasts into myotubes resulted in an increase in the expression of the disease-specific prion protein, PrPSc. The amount of scrapie infectivity or PrPSc in C2C12 myotubes was comparable to the levels found in scrapie-infected N2A cells, indicating that a high level of infection was established in muscle cells. Subclones of scrapie-infected C2C12 cells produced high levels of PrPSc in myotubes, and the C-terminal C2 polypeptide fragment of PrPSc was found based on deglycosylation and PrPSc-specific immunoprecipitation of cell lysates. This is the first report of a stable prion infection in muscle cells in vitro and of a long-term prion infection in a nondividing, differentiated peripheral cell type in culture. These in vitro studies also suggest that in vivo prion infection of skeletal muscle requires contact with prion-infected neurons or, possibly, nerve terminals.

1997 ◽  
Vol 136 (1) ◽  
pp. 137-154 ◽  
Author(s):  
Robert G. Parton ◽  
Michael Way ◽  
Natasha Zorzi ◽  
Espen Stang

Caveolae, flask-shaped invaginations of the plasma membrane, are particularly abundant in muscle cells. We have recently cloned a muscle-specific caveolin, termed caveolin-3, which is expressed in differentiated muscle cells. Specific antibodies to caveolin-3 were generated and used to characterize the distribution of caveolin-3 in adult and differentiating muscle. In fully differentiated skeletal muscle, caveolin-3 was shown to be associated exclusively with sarcolemmal caveolae. Localization of caveolin-3 during differentiation of primary cultured muscle cells and development of mouse skeletal muscle in vivo suggested that caveolin-3 is transiently associated with an internal membrane system. These elements were identified as developing transverse-(T)-tubules by double-labeling with antibodies to the α1 subunit of the dihydropyridine receptor in C2C12 cells. Ultrastructural analysis of the caveolin-3– labeled elements showed an association of caveolin-3 with elaborate networks of interconnected caveolae, which penetrated the depths of the muscle fibers. These elements, which formed regular reticular structures, were shown to be surface-connected by labeling with cholera toxin conjugates. The results suggest that caveolin-3 transiently associates with T-tubules during development and may be involved in the early development of the T-tubule system in muscle.


2013 ◽  
Vol 304 (2) ◽  
pp. C128-C136 ◽  
Author(s):  
Miriam Hoene ◽  
Heike Runge ◽  
Hans Ulrich Häring ◽  
Erwin D. Schleicher ◽  
Cora Weigert

Myogenic differentiation of skeletal muscle cells is characterized by a sequence of events that include activation of signal transducer and activator of transcription 3 (STAT3) and enhanced expression of its target gene Socs3. Autocrine effects of IL-6 may contribute to the activation of the STAT3-Socs3 cascade and thus to myogenic differentiation. The importance of IL-6 and STAT3 for the differentiation process was studied in C2C12 cells and in primary mouse wild-type and IL-6−/− skeletal muscle cells. In differentiating C2C12 myoblasts, the upregulation of IL-6 mRNA expression and protein secretion started after increased phosphorylation of STAT3 on tyrosine 705 and increased mRNA expression of Socs3 was observed. Knockdown of STAT3 and IL-6 mRNA in differentiating C2C12 myoblasts impaired the expression of the myogenic markers myogenin and MyHC IIb and subsequently myotube fusion. However, the knockdown of IL-6 did not prevent the induction of STAT3 tyrosine phosphorylation. The IL-6-independent activation of STAT3 was verified in differentiating primary IL-6−/− myoblasts. The phosphorylation of STAT3 and the expression levels of STAT3, Socs3, and myogenin during differentiation were comparable in the primary myoblasts independent of the genotype. However, IL-6−/− cells failed to induce MyHC IIb expression to the same level as in wild-type cells and showed reduced myotube formation. Supplementation of IL-6 could partially restore the fusion of IL-6−/− cells. These data demonstrate that IL-6 depletion during myogenic differentiation does not reduce the activation of the STAT3-Socs3 cascade, while IL-6 and STAT3 are both necessary to promote myotube fusion.


2021 ◽  
Vol 118 (37) ◽  
pp. e2021013118 ◽  
Author(s):  
Sebastian Mathes ◽  
Alexandra Fahrner ◽  
Umesh Ghoshdastider ◽  
Hannes A. Rüdiger ◽  
Michael Leunig ◽  
...  

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.


2020 ◽  
Author(s):  
Mariarosaria Negri ◽  
Claudia Pivonello ◽  
Chiara Simeoli ◽  
Gilda Di Gennaro ◽  
Mary Anna Venneri ◽  
...  

Introduction/Aim: Circadian rhythm disruption is emerging as a risk factor for metabolic disorders and particularly, alterations in clock genes circadian expression have been shown to influence insulin sensitivity. Recently, the reciprocal interplay between the circadian clock machinery and HPA axis has been largely demonstrated: the circadian clock may control the physiological circadian endogenous glucocorticoids secretion and action; glucocorticoids, in turn, are potent regulator of the circadian clock and their inappropriate replacement has been associated with metabolic impairment. The aim of the current study was to investigate in vitro the interaction between the timing-of-the-day exposure to different hydrocortisone (HC) concentrations on muscle insulin sensitivity. Methods: Serum-shock synchronized mouse skeletal muscle C2C12 cells were exposed to different HC concentrations recapitulating the circulating daily physiological cortisol profile (standard cortisol profile), the circulating daily cortisol profile that reached in adrenal insufficient (AI) patients treated with once-daily MR-HC (flat cortisol profile) and treated with thrice-daily of conventional IR-HC (steep cortisol profile). The 24 hrs spontaneous oscillation of the clock genes in synchronized C2C12 cells was used to align the timing for in vitro HC exposure (Bmal1 acrophase, midphase and bathyphase) with the reference times of cortisol peaks in AI treated with IR-HC (8 am, 1 pm, 6 pm). A panel of 84 insulin sensitivity related genes and intracellular insulin signaling proteins were analyzed by RT-qPCR and western blot, respectively. Results: Only the steep profile, characterized by a higher HC exposure during Bmal1 bathyphase, produced significant downregulation in 21 insulin sensitivity-related genes. Among these, Insr, Irs1, Irs2, Pi3kca and Adipor2 were downregulated when compared the flat to the standard or steep profile. Reduced intracellular IRS1 Tyr608, AKT Ser473, AMPK Thr172 and ACC Ser79 phosphorylations were also observed. Conclusions: The current study demonstrated that is late-in-the-day cortisol exposure that modulates insulin sensitivity-related genes expression and intracellular insulin signaling in skeletal muscle cells.


2003 ◽  
Vol 14 (7) ◽  
pp. 2706-2715 ◽  
Author(s):  
Aymone Gurtner ◽  
Isabella Manni ◽  
Paola Fuschi ◽  
Roberto Mantovani ◽  
Fiorella Guadagni ◽  
...  

NF-Y is composed of three subunits, NF-YA, NF-YB, and NF-YC, all required for DNA binding. All subunits are expressed in proliferating skeletal muscle cells, whereas NF-YA alone is undetectable in terminally differentiated cells in vitro. By immunohistochemistry, we show that the NF-YA protein is not expressed in the nuclei of skeletal and cardiac muscle cells in vivo. By chromatin immunoprecipitation experiments, we demonstrate herein that NF-Y does not bind to the CCAAT boxes of target promoters in differentiated muscle cells. Consistent with this, the activity of these promoters is down-regulated in differentiated muscle cells. Finally, forced expression of the NF-YA protein in cells committed to differentiate leads to an impairment in the down-regulation of cyclin A, cyclin B1, and cdk1 expression and is accompanied by a delay in myogenin expression. Thus, our results indicate that the suppression of NF-Y function is of crucial importance for the inhibition of several cell cycle genes and the induction of the early muscle-specific program in postmitotic muscle cells.


2007 ◽  
Vol 292 (2) ◽  
pp. E577-E584 ◽  
Author(s):  
Katsuji Aizawa ◽  
Motoyuki Iemitsu ◽  
Seiji Maeda ◽  
Subrina Jesmin ◽  
Takeshi Otsuki ◽  
...  

The functional importance of sex steroid hormones (testosterone and estrogens), derived from extragonadal tissues, has recently gained significant appreciation. Circulating dehydroepiandrosterone (DHEA) is peripherally taken up and converted to testosterone by 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD, and testosterone in turn is irreversibly converted to estrogens by aromatase cytochrome P-450 (P450arom). Although sex steroid hormones have been implicated in skeletal muscle regulation and adaptation, it is unclear whether skeletal muscles have a local steroidogenic enzymatic machinery capable of metabolizing circulating DHEA. Thus, here, we investigate whether the three key steroidogenic enzymes (3β-HSD, 17β-HSD, and P450arom) are present in the skeletal muscle and are capable of generating sex steroid hormones. Consistent with our hypothesis, the present study demonstrates mRNA and protein expression of these enzymes in the skeletal muscle cells of rats both in vivo and in culture (in vitro). Importantly, we also show an intracellular formation of testosterone and estradiol from DHEA or testosterone in cultured muscle cells in a dose-dependent manner. These findings are novel and important in that they provide the first evidence showing that skeletal muscles are capable of locally synthesizing sex steroid hormones from circulating DHEA or testosterone.


1967 ◽  
Vol 35 (2) ◽  
pp. 445-453 ◽  
Author(s):  
Y. Shimada ◽  
D. A. Fischman ◽  
A. A. Moscona

Dissociated myoblasts from 12-day chick embryos were cultured in monolayer, and the differentiation of skeletal muscle cells was studied by electron microscopy. The results have revealed a striking ultrastructural similarity between the in vivo and the in vitro developing muscle, particularly with respect to the myofibrils and sarcoplasmic reticulum. This study demonstrates that all the characteristic organelles of mature skeletal muscle can develop in vitro in the absence of nerves.


2002 ◽  
Vol 115 (13) ◽  
pp. 2701-2712 ◽  
Author(s):  
Chetana Sachidanandan ◽  
Ramkumar Sambasivan ◽  
Jyotsna Dhawan

Myogenic precursor cells known as satellite cells persist in adult skeletal muscle and are responsible for its ability to regenerate after injury. Quiescent satellite cells are activated by signals emanating from damaged muscle. Here we describe the rapid activation of two genes in response to muscle injury; these transcripts encode LPS-inducible CXC chemokine (LIX), a neutrophil chemoattractant, and Tristetraprolin (TTP), an RNA-binding protein implicated in the regulation of cytokine expression. Using a synchronized cell culture model we show that C2C12 myoblasts arrested in G0 exhibit some molecular attributes of satellite cells in vivo: suppression of MyoD and Myf5 expression during G0 and their reactivation in G1. Synchronization also revealed cell cycle dependent expression of CD34, M-cadherin, HGF and PEA3, genes implicated in satellite cell biology. To identify other genes induced in synchronized C2C12 myoblasts we used differential display PCR and isolated LIX and TTP cDNAs. Both LIX and TTP mRNAs are short-lived, encode molecules implicated in inflammation and are transiently induced during growth activation in vitro. Further, LIX and TTP are rapidly induced in response to muscle damage in vivo. TTP expression precedes that of MyoD and is detected 30 minutes after injury. The spatial distribution of LIX and TTP transcripts in injured muscle suggests expression by satellite cells. Our studies suggest that in addition to generating new cells for repair, activated satellite cells may be a source of signaling molecules involved in tissue remodeling during regeneration.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3506-3506
Author(s):  
Ya-Wei Qiang ◽  
Nathan Brown ◽  
Yu Chen ◽  
Shmuel Yaccoby ◽  
Bart Barlogie ◽  
...  

Abstract We have demonstrated that canonical and non-canonical Wnt signaling occurs in myeloma cells (Qiang et al., 2005) and overexpression of Wnt3a in myeloma cells inhibits the osteolytic phenotype and also tumor growth in vivo (Qiang et al Blood, Abstract #3420, 2006). To further investigate the mechanisms that contribute to this process we have expanded our in vivo data by showing that while H929 cells stably expressing Wnt3a (H929/W3a) leads to reduced tumor growth in the in-vivo SCID-hu bone graft model compared with H929 vector alone transfected control cells (H929/EV), there was no significant difference in the subcutaneous growth of the two cell lines in SCID mice. Taken together these data suggests that alteration of the human bone marrow microenvironment is central to Wnt-mediated reduction in tumor growth in bone. We next employed an in-vitro co-culture model in which the mouse osteoprogenitor cell line, C2C12, and human osteoblast cell line, Saos-2 were co-cultured with either H929/Wnt3 or H929/EV cells. QPCR analysis demonstrated that osteoprotegerin (OPG) mRNA expression (relative OPG mRNA to GAPDH) in C2C12 cells co-cultured with H929/W3a was significantly elevated compared with H929/EV (mean±SD: 14.34±0.97 vs 8.43±0.16; P<0.001). ELISA analysis showed that OPG protein levels in the cell culture supernatant were also significantly higher (71.02 ± 6.178 vs 0 pg/ml; P<0.001). Similar results in OPG mRNA and protein levels were observed in Saos-2 cells co-cultured with H929/W3a relative to H929/EV. Furthermore, treatment of C2C12 cells with recombinant Wnt3a protein induced both OPG mRNA (48.1 ±1.2 vs 1.0±0.5; P<0.001) and protein levels (1767.03 ± 44.8 vs 1.11 ± 0.03 p< 0.0001) compared with vehicle alone. These results suggest that forced expression of a canonical Wnt ligand by MM cells might promote OPG transcription in osteoblast progenitors in-vivo. To further confirm the role of Wnt signaling in regulation of OPG and RANKL transcription, we produced C2C12 cells that stably express Dkk1. These clones showed a significant inhibition of Wnt3a induced OPG mRNA (22.2± 2.3 vs 1.7±0.35; p<0.001) and protein (73.3 ± 18.0 vs. 0 pg/ml; p<0.01) compared with vector control. In contrast, RANKL mRNA (5.1±0.9 vs 1.0± 0.5, p<0.01) and protein (9.3±3.8 vs. 0 pg/ml; p<0.01) were increased in Dkk1 expressing clones compared with control. Moreover, supernatant from C2C12 clones stably expressing a DN-beta-catenin (DNBC/C2C12) contained a significantly higher level of RANKL (17.3± 3.5 pg/ml vs. 0±0; P<0.001) and a dramatically lower level of OPG protein (0±0 vs. 431.186 pg/ml; P<0.001) compared with control. Finally, the numbers of multinuclear TRAP-positive osteoclasts were significantly more abundant in culture containing supernatant from DNBC/C2C12 than that from vector control, while Wnt3a exposure had no effect on osteoclast formation in-vitro. Taken together, these data suggest that Wnt ligand-mediated inhibition of myeloma cell growth, and inhibition of osteolytic lesions, in-vivo may result from upregulation of OPG and loss of RANKL in osteoblast progenitors, which subsequently diminishes osteoclast formation. Results of these studies provide new insights into mechanism by which Wnts may serve as an important indirect regulator of myeloma growth and osteoclast formation, and as such, targeting Wnt signaling may be an new therapeutic strategy for controlling myeloma growth and associated bone disease.


2005 ◽  
Vol 33 (12) ◽  
pp. 1816-1824 ◽  
Author(s):  
Shinichi Negishi ◽  
Yong Li ◽  
Arvydas Usas ◽  
Freddie H. Fu ◽  
Johnny Huard

Background Injured skeletal muscle can repair itself via spontaneous regeneration; however, the overproduction of extracellular matrix and excessive collagen deposition lead to fibrosis. Neutralization of the effect of transforming growth factor-β1, a key fibrotic cytokine, on myogenic cell differentiation after muscle injury can prevent fibrosis, enhance muscle regeneration, and thereby improve the functional recovery of injured muscle. Hypothesis The hormone relaxin, a member of the family of insulin-like growth factors, can act as an antifibrosis agent and improve the healing of injured muscle. Study Design Controlled laboratory study. Methods In vitro: Myoblasts (C2C12 cells) and myofibroblasts (transforming growth factor-β1-transfected myoblasts) were incubated with relaxin, and cell growth and differentiation were examined. Myogenic and fibrotic protein expression was determined by Western blot analysis. In vivo: Relaxin was injected intramuscularly at different time points after laceration injury. Skeletal muscle healing was evaluated via histologic, immunohistochemical, and physiologic tests. Results Relaxin treatment resulted in a dose-dependent decrease in myofibroblast proliferation, down-regulated expression of the fibrotic protein α-smooth muscle actin, and promoted the proliferation and differentiation of myoblasts in vitro. Relaxin therapy enhanced muscle regeneration, reduced fibrosis, and improved injured muscle strength in vivo. Conclusion Administration of relaxin can significantly improve skeletal muscle healing. Clinical Relevance These findings may facilitate the development of techniques to eliminate fibrosis, enhance muscle regeneration, and improve functional recovery after muscle injuries.


Sign in / Sign up

Export Citation Format

Share Document