scholarly journals RPC82 encodes the highly conserved, third-largest subunit of RNA polymerase C (III) from Saccharomyces cerevisiae.

1992 ◽  
Vol 12 (10) ◽  
pp. 4433-4440 ◽  
Author(s):  
N Chiannilkulchai ◽  
R Stalder ◽  
M Riva ◽  
C Carles ◽  
M Werner ◽  
...  

RNA polymerase C (III) promotes the transcription of tRNA and 5S RNA genes. In Saccharomyces cerevisiae, the enzyme is composed of 15 subunits, ranging from 160 to about 10 kDa. Here we report the cloning of the gene encoding the 82-kDa subunit, RPC82. It maps as a single-copy gene on chromosome XVI. The UCR2 gene was found in the opposite orientation only 340 bp upstream of the RPC82 start codon, and the end of the SKI3 coding sequence was found only 117 bp downstream of the RPC82 stop codon. The RPC82 gene encodes a protein with a predicted M(r) of 73,984, having no strong sequence similarity to other known proteins. Disruption of the RPC82 gene was lethal. An rpc82 temperature-sensitive mutant, constructed by in vitro mutagenesis of the gene, showed a deficient rate of tRNA relative to rRNA synthesis. Of eight RNA polymerase C genes tested, only the RPC31 gene on a multicopy plasmid was capable of suppressing the rpc82(Ts) defect, suggesting an interaction between the polymerase C 82-kDa and 31-kDa subunits. A group of RNA polymerase C-specific subunits are proposed to form a substructure of the enzyme.

1992 ◽  
Vol 12 (10) ◽  
pp. 4433-4440
Author(s):  
N Chiannilkulchai ◽  
R Stalder ◽  
M Riva ◽  
C Carles ◽  
M Werner ◽  
...  

RNA polymerase C (III) promotes the transcription of tRNA and 5S RNA genes. In Saccharomyces cerevisiae, the enzyme is composed of 15 subunits, ranging from 160 to about 10 kDa. Here we report the cloning of the gene encoding the 82-kDa subunit, RPC82. It maps as a single-copy gene on chromosome XVI. The UCR2 gene was found in the opposite orientation only 340 bp upstream of the RPC82 start codon, and the end of the SKI3 coding sequence was found only 117 bp downstream of the RPC82 stop codon. The RPC82 gene encodes a protein with a predicted M(r) of 73,984, having no strong sequence similarity to other known proteins. Disruption of the RPC82 gene was lethal. An rpc82 temperature-sensitive mutant, constructed by in vitro mutagenesis of the gene, showed a deficient rate of tRNA relative to rRNA synthesis. Of eight RNA polymerase C genes tested, only the RPC31 gene on a multicopy plasmid was capable of suppressing the rpc82(Ts) defect, suggesting an interaction between the polymerase C 82-kDa and 31-kDa subunits. A group of RNA polymerase C-specific subunits are proposed to form a substructure of the enzyme.


1999 ◽  
Vol 19 (11) ◽  
pp. 7461-7472 ◽  
Author(s):  
Yeganeh Zebarjadian ◽  
Tom King ◽  
Maurille J. Fournier ◽  
Louise Clarke ◽  
John Carbon

ABSTRACT In budding yeast (Saccharomyces cerevisiae), the majority of box H/ACA small nucleolar RNPs (snoRNPs) have been shown to direct site-specific pseudouridylation of rRNA. Among the known protein components of H/ACA snoRNPs, the essential nucleolar protein Cbf5p is the most likely pseudouridine (Ψ) synthase. Cbf5p has considerable sequence similarity to Escherichia coli TruBp, a known Ψ synthase, and shares the “KP” and “XLD” conserved sequence motifs found in the catalytic domains of three distinct families of known and putative Ψ synthases. To gain additional evidence on the role of Cbf5p in rRNA biosynthesis, we have used in vitro mutagenesis techniques to introduce various alanine substitutions into the putative Ψ synthase domain of Cbf5p. Yeast strains expressing these mutatedcbf5 genes in a cbf5Δ null background are viable at 25°C but display pronounced cold- and heat-sensitive growth phenotypes. Most of the mutants contain reduced levels of Ψ in rRNA at extreme temperatures. Substitution of alanine for an aspartic acid residue in the conserved XLD motif of Cbf5p (mutantcbf5D95A) abolishes in vivo pseudouridylation of rRNA. Some of the mutants are temperature sensitive both for growth and for formation of Ψ in the rRNA. In most cases, the impaired growth phenotypes are not relieved by transcription of the rRNA from a polymerase II-driven promoter, indicating the absence of polymerase I-related transcriptional defects. There is little or no abnormal accumulation of pre-rRNAs in these mutants, although preferential inhibition of 18S rRNA synthesis is seen in mutantcbf5D95A, which lacks Ψ in rRNA. A subset of mutations in the Ψ synthase domain impairs association of the altered Cbf5p proteins with selected box H/ACA snoRNAs, suggesting that the functional catalytic domain is essential for that interaction. Our results provide additional evidence that Cbf5p is the Ψ synthase component of box H/ACA snoRNPs and suggest that the pseudouridylation of rRNA, although not absolutely required for cell survival, is essential for the formation of fully functional ribosomes.


1993 ◽  
Vol 123 (2) ◽  
pp. 387-403 ◽  
Author(s):  
M T Brown ◽  
L Goetsch ◽  
L H Hartwell

The function of the essential MIF2 gene in the Saccharomyces cerevisiae cell cycle was examined by overepressing or creating a deficit of MIF2 gene product. When MIF2 was overexpressed, chromosomes missegregated during mitosis and cells accumulated in the G2 and M phases of the cell cycle. Temperature sensitive mutants isolated by in vitro mutagenesis delayed cell cycle progression when grown at the restrictive temperature, accumulated as large budded cells that had completed DNA replication but not chromosome segregation, and lost viability as they passed through mitosis. Mutant cells also showed increased levels of mitotic chromosome loss, supersensitivity to the microtubule destabilizing drug MBC, and morphologically aberrant spindles. mif2 mutant spindles arrested development immediately before anaphase spindle elongation, and then frequently broke apart into two disconnected short half spindles with misoriented spindle pole bodies. These findings indicate that MIF2 is required for structural integrity of the spindle during anaphase spindle elongation. The deduced Mif2 protein sequence shared no extensive homologies with previously identified proteins but did contain a short region of homology to a motif involved in binding AT rich DNA by the Drosophila D1 and mammalian HMGI chromosomal proteins.


1984 ◽  
Vol 4 (11) ◽  
pp. 2396-2405
Author(s):  
R L Last ◽  
J B Stavenhagen ◽  
J L Woolford

Temperature-sensitive mutations in the genes RNA2 through RNA11 cause accumulation of intervening sequence containing precursor mRNAs in Saccharomyces cerevisiae. Three different plasmids have been isolated which complement both the temperature-sensitive lethality and precursor mRNA accumulation when introduced into rna2, rna3, and rna11 mutant strains. The yeast sequences on these plasmids have been shown by Southern transfer hybridization and genetic mapping to be derived from the RNA2, RNA3, and RNA11 genomic loci. Part of the RNA2 gene is homologous to more than one region of the yeast genome, whereas the RNA3 and RNA11 genes are single copy. RNAs homologous to these loci have been identified by RNA transfer hybridization, and the specific RNAs which are associated with the Rna+ phenotype have been mapped. This was done by a combination of transcript mapping, subcloning, and in vitro mutagenesis. The transcripts are found to be enriched in polyadenylated RNA and are of very low abundance (0.01-0.001% polyadenylated RNA).


1993 ◽  
Vol 13 (9) ◽  
pp. 5861-5876
Author(s):  
J S Flick ◽  
J Thorner

Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphatidylinositol-specific phospholipase C (PI-PLC) generates two second messengers, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. The polymerase chain reaction was used to isolate a Saccharomyces cerevisiae gene (PLC1) that encodes a protein of 869 amino acids (designated Plc1p) that bears greatest resemblance to the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain arrangement. Plc1p contains the conserved X and Y domains found in all higher eukaryotic PI-PLCs (51 and 29% identity, respectively, to the corresponding domains of rat delta 1 PI-PLC) and also contains a presumptive Ca(2+)-binding site (an E-F hand motif). Plc1p, modified by in-frame insertion of a His6 tract and a c-myc epitope near its amino terminus, was overexpressed from the GAL1 promoter, partially purified by nickel chelate affinity chromatography, and shown to be an active PLC enzyme in vitro with properties similar to those of its mammalian counterparts. Plc1p activity was strictly Ca2+ dependent: at a high Ca2+ concentration (0.1 mM), the enzyme hydrolyzed PIP2 at a faster rate than phosphatidylinositol, and at a low Ca2+ concentration (0.5 microM), it hydrolyzed PIP2 exclusively. Cells carrying either of two different deletion-insertion mutations (plc1 delta 1::HIS3 and plc1 delta 2::LEU2) were viable but displayed several distinctive phenotypes, including temperature-sensitive growth (inviable above 35 degrees C), osmotic sensitivity, and defects in the utilization of galactose, raffinose, and glycerol at permissive temperatures (23 to 30 degrees C). The findings reported here suggest that hydrolysis of PIP2 in S. cerevisiae is required for a number of nutritional and stress-related responses.


1987 ◽  
Vol 7 (6) ◽  
pp. 2155-2164 ◽  
Author(s):  
H J Himmelfarb ◽  
E M Simpson ◽  
J D Friesen

Three independent, recessive, temperature-sensitive (Ts-) conditional lethal mutations in the largest subunit of Saccharomyces cerevisiae RNA polymerase II (RNAP II) have been isolated after replacement of a portion of the wild-type gene (RPO21) by a mutagenized fragment of the cloned gene. Measurements of cell growth, viability, and total RNA and protein synthesis showed that rpo21-1, rpo21-2, and rpo21-3 mutations caused a slow shutoff of RNAP II activity in cells shifted to the nonpermissive temperature (39 degrees C). Each mutant displayed a distinct phenotype, and one of the mutant enzymes (rpo21-1) was completely deficient in RNAP II activity in vitro. RNAP I and RNAP III in vitro activities were not affected. These results were consistent with the notion that the genetic lesions affect RNAP II assembly or holoenzyme stability. DNA sequencing revealed that in each case the mutations involved nonconservative amino acid substitutions, resulting in charge changes. The lesions harbored by all three rpo21 Ts- alleles lie in DNA sequence domains that are highly conserved among genes that encode the largest subunits of RNAP from a variety of eucaryotes; one mutation lies in a possible Zn2+ binding domain.


2005 ◽  
Vol 4 (11) ◽  
pp. 1801-1807 ◽  
Author(s):  
Heather A. Newman ◽  
Martin J. Romeo ◽  
Sarah E. Lewis ◽  
Benjamin C. Yan ◽  
Peter Orlean ◽  
...  

ABSTRACT Glycosylphosphatidylinositols (GPIs) are attached to the C termini of some glycosylated secretory proteins, serving as membrane anchors for many of those on the cell surface. Biosynthesis of GPIs is initiated by the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol. This reaction is carried out at the endoplasmic reticulum (ER) by an enzyme complex called GPI-N-acetylglucosaminyltransferase (GPI-GlcNAc transferase). The human enzyme has six known subunits, at least four of which, GPI1, PIG-A, PIG-C, and PIG-H, have functional homologs in the budding yeast Saccharomyces cerevisiae. The uncharacterized yeast gene YDR437w encodes a protein with some sequence similarity to human PIG-P, a fifth subunit of the GPI-GlcNAc transferase. Here we show that Ydr437w is a small but essential subunit of the yeast GPI-GlcNAc transferase, and we designate its gene GPI19. Similar to other mutants in the yeast enzyme, temperature-sensitive gpi19 mutants display cell wall defects and hyperactive Ras phenotypes. The Gpi19 protein associates with the yeast GPI-GlcNAc transferase in vivo, as judged by coimmuneprecipitation with the Gpi2 subunit. Moreover, conditional gpi19 mutants are defective for GPI-GlcNAc transferase activity in vitro. Finally, we present evidence for the topology of Gpi19 within the ER membrane.


Genetics ◽  
1988 ◽  
Vol 119 (3) ◽  
pp. 517-526
Author(s):  
R Gudenus ◽  
S Mariotte ◽  
A Moenne ◽  
A Ruet ◽  
S Memet ◽  
...  

Abstract A 18.4-kb fragment of the yeast genome containing the gene of the largest subunit of RNA polymerase C (RPC160) was cloned by hybridization to a previously isolated fragment of that gene. RPC160 maps on chromosome XV, tightly linked but not allelic to the essential gene TSM8740. Temperature sensitive (ts) mutant alleles were constructed by in vitro mutagenesis with NaHSO3 and substituted for the wild-type allele on the chromosome. Four of them were unambiguously identified as rpc160 mutants by failure to complement a fully defective mutation rpc160::URA3. The faithful transcription of a yeast tRNA gene by mutant cell-free extracts is strongly reduced as compared to wild-type. In vivo, the rpc160 mutations specifically affect the synthesis of tRNA in a temperature sensitive way, with comparatively little effect on the synthesis of 5S rRNA and no effect on 5.8S rRNA. An unlinked mutation (pcil-3) suppresses the temperature sensitive phenotype of the rpc160-41 mutation.


1993 ◽  
Vol 13 (9) ◽  
pp. 5861-5876 ◽  
Author(s):  
J S Flick ◽  
J Thorner

Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphatidylinositol-specific phospholipase C (PI-PLC) generates two second messengers, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. The polymerase chain reaction was used to isolate a Saccharomyces cerevisiae gene (PLC1) that encodes a protein of 869 amino acids (designated Plc1p) that bears greatest resemblance to the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain arrangement. Plc1p contains the conserved X and Y domains found in all higher eukaryotic PI-PLCs (51 and 29% identity, respectively, to the corresponding domains of rat delta 1 PI-PLC) and also contains a presumptive Ca(2+)-binding site (an E-F hand motif). Plc1p, modified by in-frame insertion of a His6 tract and a c-myc epitope near its amino terminus, was overexpressed from the GAL1 promoter, partially purified by nickel chelate affinity chromatography, and shown to be an active PLC enzyme in vitro with properties similar to those of its mammalian counterparts. Plc1p activity was strictly Ca2+ dependent: at a high Ca2+ concentration (0.1 mM), the enzyme hydrolyzed PIP2 at a faster rate than phosphatidylinositol, and at a low Ca2+ concentration (0.5 microM), it hydrolyzed PIP2 exclusively. Cells carrying either of two different deletion-insertion mutations (plc1 delta 1::HIS3 and plc1 delta 2::LEU2) were viable but displayed several distinctive phenotypes, including temperature-sensitive growth (inviable above 35 degrees C), osmotic sensitivity, and defects in the utilization of galactose, raffinose, and glycerol at permissive temperatures (23 to 30 degrees C). The findings reported here suggest that hydrolysis of PIP2 in S. cerevisiae is required for a number of nutritional and stress-related responses.


1987 ◽  
Vol 7 (6) ◽  
pp. 2155-2164
Author(s):  
H J Himmelfarb ◽  
E M Simpson ◽  
J D Friesen

Three independent, recessive, temperature-sensitive (Ts-) conditional lethal mutations in the largest subunit of Saccharomyces cerevisiae RNA polymerase II (RNAP II) have been isolated after replacement of a portion of the wild-type gene (RPO21) by a mutagenized fragment of the cloned gene. Measurements of cell growth, viability, and total RNA and protein synthesis showed that rpo21-1, rpo21-2, and rpo21-3 mutations caused a slow shutoff of RNAP II activity in cells shifted to the nonpermissive temperature (39 degrees C). Each mutant displayed a distinct phenotype, and one of the mutant enzymes (rpo21-1) was completely deficient in RNAP II activity in vitro. RNAP I and RNAP III in vitro activities were not affected. These results were consistent with the notion that the genetic lesions affect RNAP II assembly or holoenzyme stability. DNA sequencing revealed that in each case the mutations involved nonconservative amino acid substitutions, resulting in charge changes. The lesions harbored by all three rpo21 Ts- alleles lie in DNA sequence domains that are highly conserved among genes that encode the largest subunits of RNAP from a variety of eucaryotes; one mutation lies in a possible Zn2+ binding domain.


Sign in / Sign up

Export Citation Format

Share Document