scholarly journals Isolation and characterization of temperature-sensitive RNA polymerase II mutants of Saccharomyces cerevisiae.

1987 ◽  
Vol 7 (6) ◽  
pp. 2155-2164 ◽  
Author(s):  
H J Himmelfarb ◽  
E M Simpson ◽  
J D Friesen

Three independent, recessive, temperature-sensitive (Ts-) conditional lethal mutations in the largest subunit of Saccharomyces cerevisiae RNA polymerase II (RNAP II) have been isolated after replacement of a portion of the wild-type gene (RPO21) by a mutagenized fragment of the cloned gene. Measurements of cell growth, viability, and total RNA and protein synthesis showed that rpo21-1, rpo21-2, and rpo21-3 mutations caused a slow shutoff of RNAP II activity in cells shifted to the nonpermissive temperature (39 degrees C). Each mutant displayed a distinct phenotype, and one of the mutant enzymes (rpo21-1) was completely deficient in RNAP II activity in vitro. RNAP I and RNAP III in vitro activities were not affected. These results were consistent with the notion that the genetic lesions affect RNAP II assembly or holoenzyme stability. DNA sequencing revealed that in each case the mutations involved nonconservative amino acid substitutions, resulting in charge changes. The lesions harbored by all three rpo21 Ts- alleles lie in DNA sequence domains that are highly conserved among genes that encode the largest subunits of RNAP from a variety of eucaryotes; one mutation lies in a possible Zn2+ binding domain.

1987 ◽  
Vol 7 (6) ◽  
pp. 2155-2164
Author(s):  
H J Himmelfarb ◽  
E M Simpson ◽  
J D Friesen

Three independent, recessive, temperature-sensitive (Ts-) conditional lethal mutations in the largest subunit of Saccharomyces cerevisiae RNA polymerase II (RNAP II) have been isolated after replacement of a portion of the wild-type gene (RPO21) by a mutagenized fragment of the cloned gene. Measurements of cell growth, viability, and total RNA and protein synthesis showed that rpo21-1, rpo21-2, and rpo21-3 mutations caused a slow shutoff of RNAP II activity in cells shifted to the nonpermissive temperature (39 degrees C). Each mutant displayed a distinct phenotype, and one of the mutant enzymes (rpo21-1) was completely deficient in RNAP II activity in vitro. RNAP I and RNAP III in vitro activities were not affected. These results were consistent with the notion that the genetic lesions affect RNAP II assembly or holoenzyme stability. DNA sequencing revealed that in each case the mutations involved nonconservative amino acid substitutions, resulting in charge changes. The lesions harbored by all three rpo21 Ts- alleles lie in DNA sequence domains that are highly conserved among genes that encode the largest subunits of RNAP from a variety of eucaryotes; one mutation lies in a possible Zn2+ binding domain.


1984 ◽  
Vol 4 (11) ◽  
pp. 2396-2405
Author(s):  
R L Last ◽  
J B Stavenhagen ◽  
J L Woolford

Temperature-sensitive mutations in the genes RNA2 through RNA11 cause accumulation of intervening sequence containing precursor mRNAs in Saccharomyces cerevisiae. Three different plasmids have been isolated which complement both the temperature-sensitive lethality and precursor mRNA accumulation when introduced into rna2, rna3, and rna11 mutant strains. The yeast sequences on these plasmids have been shown by Southern transfer hybridization and genetic mapping to be derived from the RNA2, RNA3, and RNA11 genomic loci. Part of the RNA2 gene is homologous to more than one region of the yeast genome, whereas the RNA3 and RNA11 genes are single copy. RNAs homologous to these loci have been identified by RNA transfer hybridization, and the specific RNAs which are associated with the Rna+ phenotype have been mapped. This was done by a combination of transcript mapping, subcloning, and in vitro mutagenesis. The transcripts are found to be enriched in polyadenylated RNA and are of very low abundance (0.01-0.001% polyadenylated RNA).


1988 ◽  
Vol 8 (10) ◽  
pp. 3997-4008
Author(s):  
M Wittekind ◽  
J Dodd ◽  
L Vu ◽  
J M Kolb ◽  
J M Buhler ◽  
...  

The isolation and characterization of temperature-sensitive mutations in RNA polymerase I from Saccharomyces cerevisiae are described. A plasmid carrying RPA190, the gene encoding the largest subunit of the enzyme, was subjected to in vitro mutagenesis with hydroxylamine. Using a plasmid shuffle screening system, five different plasmids were isolated which conferred a temperature-sensitive phenotype in haploid yeast strains carrying the disrupted chromosomal RPA190 gene. These temperature-sensitive alleles were transferred to the chromosomal RPA190 locus for mapping and physiology experiments. Accumulation of RNA was found to be defective in all mutant strains at the nonpermissive temperature. In addition, analysis of pulse-labeled RNA from two mutant strains at 37 degrees C showed that the transcription of rRNA genes was decreased, while that of 5S RNA was relatively unaffected. RNA polymerase I was partially purified from several of the mutant strains grown at the nonpermissive temperature and was shown to be deficient when assayed in vitro. Fine-structure mapping and sequencing of the mutant alleles demonstrated that all five mutations were unique. The rpa190-1 and rpa190-5 mutations are tightly clustered in region I (S.S. Broyles and B. Moss, Proc. Natl. Acad. Sci. USA 83:3141-3145, 1986), the putative zinc-binding region that is common to all eucaryotic RNA polymerase large subunits. The rpa190-3 mutation is located between regions III and IV, and a strain carrying it behaves as a mutant that is defective in the synthesis of the enzyme. This mutation lies within a previously unidentified segment of highly conserved amino acid sequence homology that is shared among the largest subunits of eucaryotic nuclear RNA polymerases. Another temperature-sensitive mutation, rpa190-2, creates a UGA nonsense codon.


1988 ◽  
Vol 8 (10) ◽  
pp. 3997-4008 ◽  
Author(s):  
M Wittekind ◽  
J Dodd ◽  
L Vu ◽  
J M Kolb ◽  
J M Buhler ◽  
...  

The isolation and characterization of temperature-sensitive mutations in RNA polymerase I from Saccharomyces cerevisiae are described. A plasmid carrying RPA190, the gene encoding the largest subunit of the enzyme, was subjected to in vitro mutagenesis with hydroxylamine. Using a plasmid shuffle screening system, five different plasmids were isolated which conferred a temperature-sensitive phenotype in haploid yeast strains carrying the disrupted chromosomal RPA190 gene. These temperature-sensitive alleles were transferred to the chromosomal RPA190 locus for mapping and physiology experiments. Accumulation of RNA was found to be defective in all mutant strains at the nonpermissive temperature. In addition, analysis of pulse-labeled RNA from two mutant strains at 37 degrees C showed that the transcription of rRNA genes was decreased, while that of 5S RNA was relatively unaffected. RNA polymerase I was partially purified from several of the mutant strains grown at the nonpermissive temperature and was shown to be deficient when assayed in vitro. Fine-structure mapping and sequencing of the mutant alleles demonstrated that all five mutations were unique. The rpa190-1 and rpa190-5 mutations are tightly clustered in region I (S.S. Broyles and B. Moss, Proc. Natl. Acad. Sci. USA 83:3141-3145, 1986), the putative zinc-binding region that is common to all eucaryotic RNA polymerase large subunits. The rpa190-3 mutation is located between regions III and IV, and a strain carrying it behaves as a mutant that is defective in the synthesis of the enzyme. This mutation lies within a previously unidentified segment of highly conserved amino acid sequence homology that is shared among the largest subunits of eucaryotic nuclear RNA polymerases. Another temperature-sensitive mutation, rpa190-2, creates a UGA nonsense codon.


1984 ◽  
Vol 4 (11) ◽  
pp. 2396-2405 ◽  
Author(s):  
R L Last ◽  
J B Stavenhagen ◽  
J L Woolford

Temperature-sensitive mutations in the genes RNA2 through RNA11 cause accumulation of intervening sequence containing precursor mRNAs in Saccharomyces cerevisiae. Three different plasmids have been isolated which complement both the temperature-sensitive lethality and precursor mRNA accumulation when introduced into rna2, rna3, and rna11 mutant strains. The yeast sequences on these plasmids have been shown by Southern transfer hybridization and genetic mapping to be derived from the RNA2, RNA3, and RNA11 genomic loci. Part of the RNA2 gene is homologous to more than one region of the yeast genome, whereas the RNA3 and RNA11 genes are single copy. RNAs homologous to these loci have been identified by RNA transfer hybridization, and the specific RNAs which are associated with the Rna+ phenotype have been mapped. This was done by a combination of transcript mapping, subcloning, and in vitro mutagenesis. The transcripts are found to be enriched in polyadenylated RNA and are of very low abundance (0.01-0.001% polyadenylated RNA).


2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


2004 ◽  
Vol 24 (7) ◽  
pp. 2932-2943 ◽  
Author(s):  
Hailing Cheng ◽  
Xiaoyuan He ◽  
Claire Moore

ABSTRACT Swd2, an essential WD repeat protein in Saccharomyces cerevisiae, is a component of two very different complexes: the cleavage and polyadenylation factor CPF and the Set1 methylase, which modifies lysine 4 of histone H3 (H3-K4). It was not known if Swd2 is important for the function of either of these entities. We show here that, in extract from cells depleted of Swd2, cleavage and polyadenylation of the mRNA precursor in vitro are completely normal. However, temperature-sensitive mutations or depletion of Swd2 causes termination defects in some genes transcribed by RNA polymerase II. Overexpression of Ref2, a protein previously implicated in snoRNA 3′ end formation and Swd2 recruitment to CPF, can rescue the growth and termination defects, indicating a functional interaction between the two proteins. Some swd2 mutations also significantly decrease global H3-K4 methylation and cause other phenotypes associated with loss of this chromatin modification, such as loss of telomere silencing, hydroxyurea sensitivity, and alterations in repression of INO1 transcription. Even though the two Swd2-containing complexes are both localized to actively transcribed genes, the allele specificities of swd2 defects suggest that the functions of Swd2 in mediating RNA polymerase II termination and H3-K4 methylation are not tightly coupled.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1059-1070
Author(s):  
Susie C Howard ◽  
Arelis Hester ◽  
Paul K Herman

Abstract The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription.


1990 ◽  
Vol 10 (5) ◽  
pp. 1908-1914
Author(s):  
C Martin ◽  
S Okamura ◽  
R Young

The two large subunits of RNA polymerase II, RPB1 and RPB2, contain regions of extensive homology to the two large subunits of Escherichia coli RNA polymerase. These homologous regions may represent separate protein domains with unique functions. We investigated whether suppressor genetics could provide evidence for interactions between specific segments of RPB1 and RPB2 in Saccharomyces cerevisiae. A plasmid shuffle method was used to screen thoroughly for mutations in RPB2 that suppress a temperature-sensitive mutation, rpb1-1, which is located in region H of RPB1. All six RPB2 mutations that suppress rpb1-1 were clustered in region I of RPB2. The location of these mutations and the observation that they were allele specific for suppression of rpb1-1 suggests an interaction between region H of RPB1 and region I of RPB2. A similar experiment was done to isolate and map mutations in RPB1 that suppress a temperature-sensitive mutation, rpb2-2, which occurs in region I of RPB2. These suppressor mutations were not clustered in a particular region. Thus, fine structure suppressor genetics can provide evidence for interactions between specific segments of two proteins, but the results of this type of analysis can depend on the conditional mutation to be suppressed.


Sign in / Sign up

Export Citation Format

Share Document