scholarly journals The EGD1 product, a yeast homolog of human BTF3, may be involved in GAL4 DNA binding.

1992 ◽  
Vol 12 (12) ◽  
pp. 5683-5689 ◽  
Author(s):  
M R Parthun ◽  
D A Mangus ◽  
J A Jaehning

A variety of techniques, including filter binding, footprinting, and gel retardation, can be used to assay the transcriptional activator GAL4 (Gal4p) through the initial steps of its purification from yeast cells. Following DNA affinity chromatography, Gal4p still bound DNA selectively when assayed by filter binding or footprinting. However, the affinity-purified protein was no longer capable of forming a stable complex with DNA, as assayed by gel retardation. Mixing the purified Gal4p with the flowthrough fraction from the DNA affinity column restored gel retardation complex formation. Gel retardation assays were used to monitor the purification of a heat-stable Gal4p-DNA complex stabilization activity from the affinity column flowthrough. The activity coeluted from the final purification step with polypeptides of 21 and 27 kDa. The yeast gene encoding the 21-kDa protein was cloned on the basis of its N-terminal amino acid sequence. The gene, named EGD1 (enhancer of GAL4 DNA binding), encodes a highly basic protein (21% lysine and arginine) with a predicted molecular mass of 16.5 kDa. The amino acid sequence of the EGD1 product, Egd1p, is highly similar to that of the human protein BTF3 (X. M. Zheng, D. Black, P. Chambon, and J. M. Egly, Nature [London] 344:556-559, 1990). Although an egd1 null mutant was viable and Gal+, induction of the galactose-regulated genes in the egd1 mutant strain was significantly reduced when cells were shifted from glucose to galactose.

1992 ◽  
Vol 12 (12) ◽  
pp. 5683-5689
Author(s):  
M R Parthun ◽  
D A Mangus ◽  
J A Jaehning

A variety of techniques, including filter binding, footprinting, and gel retardation, can be used to assay the transcriptional activator GAL4 (Gal4p) through the initial steps of its purification from yeast cells. Following DNA affinity chromatography, Gal4p still bound DNA selectively when assayed by filter binding or footprinting. However, the affinity-purified protein was no longer capable of forming a stable complex with DNA, as assayed by gel retardation. Mixing the purified Gal4p with the flowthrough fraction from the DNA affinity column restored gel retardation complex formation. Gel retardation assays were used to monitor the purification of a heat-stable Gal4p-DNA complex stabilization activity from the affinity column flowthrough. The activity coeluted from the final purification step with polypeptides of 21 and 27 kDa. The yeast gene encoding the 21-kDa protein was cloned on the basis of its N-terminal amino acid sequence. The gene, named EGD1 (enhancer of GAL4 DNA binding), encodes a highly basic protein (21% lysine and arginine) with a predicted molecular mass of 16.5 kDa. The amino acid sequence of the EGD1 product, Egd1p, is highly similar to that of the human protein BTF3 (X. M. Zheng, D. Black, P. Chambon, and J. M. Egly, Nature [London] 344:556-559, 1990). Although an egd1 null mutant was viable and Gal+, induction of the galactose-regulated genes in the egd1 mutant strain was significantly reduced when cells were shifted from glucose to galactose.


1999 ◽  
Vol 65 (12) ◽  
pp. 5207-5211 ◽  
Author(s):  
Keiko Kita ◽  
Takanobu Fukura ◽  
Koh-Ichi Nakase ◽  
Kenji Okamoto ◽  
Hideshi Yanase ◽  
...  

ABSTRACT We cloned and sequenced the gene encoding an NADPH-dependent aldehyde reductase (ARII) in Sporobolomyces salmonicolorAKU4429, which reduces ethyl 4-chloro-3-oxobutanoate (4-COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate. The ARII gene is 1,032 bp long, is interrupted by four introns, and encodes a 37,315-Da polypeptide. The deduced amino acid sequence exhibited significant levels of similarity to the amino acid sequences of members of the mammalian 3β-hydroxysteroid dehydrogenase–plant dihydroflavonol 4-reductase superfamily but not to the amino acid sequences of members of the aldo-keto reductase superfamily or to the amino acid sequence of an aldehyde reductase previously isolated from the same organism (K. Kita, K. Matsuzaki, T. Hashimoto, H. Yanase, N. Kato, M. C.-M. Chung, M. Kataoka, and S. Shimizu, Appl. Environ. Microbiol. 62:2303–2310, 1996). The ARII protein was overproduced inEscherichia coli about 2,000-fold compared to the production in the original yeast cells. The enzyme expressed inE. coli was purified to homogeneity and had the same catalytic properties as ARII purified from S. salmonicolor. To examine the contribution of the dinucleotide-binding motif G19-X-X-G22-X-X-A25, which is located in the N-terminal region, during ARII catalysis, we replaced three amino acid residues in the motif and purified the resulting mutant enzymes. Substrate inhibition of the G19→A and G22→A mutant enzymes by 4-COBE did not occur. The A25→G mutant enzyme could reduce 4-COBE when NADPH was replaced by an equimolar concentration of NADH.


2020 ◽  
Vol 85 (3) ◽  
pp. 626-629
Author(s):  
Hisashi Muramatsu ◽  
Hiroki Maguchi ◽  
Taisuke Harada ◽  
Takehiro Kashiwagi ◽  
Chul-Sa Kim ◽  
...  

ABSTRACT Here, we report the identification of the gene encoding a novel enzyme, 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid desulfhydrase, in Burkholderia sp. HME13. The enzyme converts 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid and H2O to 3-(2,5-dioxoimidazolidin-4-yl) propionic acid and H2S. Amino acid sequence analysis of the enzyme indicates that it belongs to the DUF917 protein family, which consists of proteins of unknown function.


2001 ◽  
Vol 183 (6) ◽  
pp. 1954-1960 ◽  
Author(s):  
Grit Zarnt ◽  
Thomas Schräder ◽  
Jan R. Andreesen

ABSTRACT The quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase (THFA-DH) from Ralstonia eutropha strain Bo was investigated for its catalytic properties. The apparentk cat/Km andK i values for several substrates were determined using ferricyanide as an artificial electron acceptor. The highest catalytic efficiency was obtained with n-pentanol exhibiting a k cat/Km value of 788 × 104 M−1 s−1. The enzyme showed substrate inhibition kinetics for most of the alcohols and aldehydes investigated. A stereoselective oxidation of chiral alcohols with a varying enantiomeric preference was observed. Initial rate studies using ethanol and acetaldehyde as substrates revealed that a ping-pong mechanism can be assumed for in vitro catalysis of THFA-DH. The gene encoding THFA-DH from R. eutropha strain Bo (tfaA) has been cloned and sequenced. The derived amino acid sequence showed an identity of up to 67% to the sequence of various quinoprotein and quinohemoprotein dehydrogenases. A comparison of the deduced sequence with the N-terminal amino acid sequence previously determined by Edman degradation analysis suggested the presence of a signal sequence of 27 residues. The primary structure of TfaA indicated that the protein has a tertiary structure quite similar to those of other quinoprotein dehydrogenases.


1988 ◽  
Vol 8 (3) ◽  
pp. 1113-1122 ◽  
Author(s):  
E Czarnecka ◽  
R T Nagao ◽  
J L Key ◽  
W B Gurley

We determined the DNA sequence and mapped the corresponding transcripts of a genomic clone containing the Gmhsp26-A gene of soybean. This gene is homologous to the previously characterized cDNA clone pCE54 (E. Czarnecka, L. Edelman, F. Schöffl, and J. L. Key, Plant Mol. Biol. 3:45-58, 1984) and is expressed in response to a wide variety of physiological stresses including heat shock (HS). S1 nuclease mapping of transcripts and a comparison of the cDNA sequence with the genomic sequence indicated the presence of a soybean seedlings with either CdCl2 or CuSO4. Analysis of the 5' termini of transcripts indicated the presence of one major and at least two minor start sites. In each case, initiation occurred 27 to 30 base pairs downstream from a TATA-like motif, and thus each initiation site appears to be promoted by the activity of a separate subpromoter. The three subpromoters are all associated with sequences showing low homology to the HS consensus element of Drosophila melanogaster HS genes and are differentially induced in response to various stresses. Within the carboxyl-terminal half of the protein, hydropathy analysis of the deduced amino acid sequence indicated a high degree of relatedness to the small HS proteins. A comparison of the primary amino acid sequence of hsp26-A with sequences of the small HS proteins suggested that this stress protein is highly diverged and may therefore be specialized for stress adaptation in soybean.


1994 ◽  
Vol 14 (11) ◽  
pp. 7111-7123
Author(s):  
K Hahm ◽  
P Ernst ◽  
K Lo ◽  
G S Kim ◽  
C Turck ◽  
...  

The lymphocyte-specific DNA-binding protein LyF-1 interacts with a critical control element in the terminal deoxynucleotidyltransferase (TdT) promoter as well as with the promoters for other genes expressed during early stages of B- and T-cell development. We have purified LyF-1 and have obtained a partial amino acid sequence from proteolytic peptides. The amino acid sequence suggests that LyF-1 is a zinc finger protein encoded by the Ikaros gene, which previously was implicated in T-cell development. Recombinant Ikaros expressed in Escherichia coli bound to the TdT promoter, and antisera directed against the recombinant protein specifically blocked the DNA-binding activity of LyF-1 in crude extracts. Further analysis revealed that at least six distinct mRNAs are derived from the Ikaros/LyF-1 gene by alternative splicing. Only two of the isoforms possess the N-terminal zinc finger domain that is necessary and sufficient for TdT promoter binding. Although both of these isoforms bound to similar sequences in the TdT, lambda 5, VpreB, and lck promoters, one isoform contains an additional zinc finger that resulted in altered recognition of some binding sites. At least four of the Ikaros/LyF-1 isoforms were detectable in extracts from B- and T-cell lines, with the relative amounts of the isoforms varying considerably. These data reveal that the LyF-1 protein is encoded by specific mRNAs derived from the alternatively-spliced Ikaros gene, suggesting that this gene may be important for the early stages of both B- and T-lymphocyte development.


1992 ◽  
Vol 12 (2) ◽  
pp. 598-608
Author(s):  
J D Chen ◽  
C S Chan ◽  
V Pirrotta

The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.


1988 ◽  
Vol 8 (3) ◽  
pp. 1113-1122
Author(s):  
E Czarnecka ◽  
R T Nagao ◽  
J L Key ◽  
W B Gurley

We determined the DNA sequence and mapped the corresponding transcripts of a genomic clone containing the Gmhsp26-A gene of soybean. This gene is homologous to the previously characterized cDNA clone pCE54 (E. Czarnecka, L. Edelman, F. Schöffl, and J. L. Key, Plant Mol. Biol. 3:45-58, 1984) and is expressed in response to a wide variety of physiological stresses including heat shock (HS). S1 nuclease mapping of transcripts and a comparison of the cDNA sequence with the genomic sequence indicated the presence of a soybean seedlings with either CdCl2 or CuSO4. Analysis of the 5' termini of transcripts indicated the presence of one major and at least two minor start sites. In each case, initiation occurred 27 to 30 base pairs downstream from a TATA-like motif, and thus each initiation site appears to be promoted by the activity of a separate subpromoter. The three subpromoters are all associated with sequences showing low homology to the HS consensus element of Drosophila melanogaster HS genes and are differentially induced in response to various stresses. Within the carboxyl-terminal half of the protein, hydropathy analysis of the deduced amino acid sequence indicated a high degree of relatedness to the small HS proteins. A comparison of the primary amino acid sequence of hsp26-A with sequences of the small HS proteins suggested that this stress protein is highly diverged and may therefore be specialized for stress adaptation in soybean.


Sign in / Sign up

Export Citation Format

Share Document