Separation of factors required for cleavage and polyadenylation of yeast pre-mRNA

1992 ◽  
Vol 12 (8) ◽  
pp. 3470-3481
Author(s):  
J Chen ◽  
C Moore

Cleavage and polyadenylation of yeast precursor RNA require at least four functionally distinct factors (cleavage factor I [CF I], CF II, polyadenylation factor I [PF I], and poly(A) polymerase [PAP]) obtained from yeast whole cell extract. Cleavage of precursor occurs upon combination of the CF I and CF II fractions. The cleavage reaction proceeds in the absence of PAP or PF I. The cleavage factors exhibit low but detectable activity without exogenous ATP but are stimulated when this cofactor is included in the reaction. Cleavage by CF I and CF II is dependent on the presence of a (UA)6 sequence upstream of the GAL7 poly(A) site. The factors will also efficiently cleave precursor with the CYC1 poly(A) site. This RNA does not contain a UA repeat, and processing at this site is thought to be directed by a UAG...UAUGUA-type motif. Specific polyadenylation of a precleaved GAL7 RNA requires CF I, PF I, and a crude fraction containing PAP activity. The PAP fraction can be replaced by recombinant PAP, indicating that this enzyme is the only factor in this fraction needed for the reconstituted reaction. The poly(A) addition step is also dependent on the UA repeat. Since CF I is the only factor necessary for both cleavage and poly(A) addition, it is likely that this fraction contains a component which recognizes processing signals located upstream of the poly(A) site. The initial separation of processing factors in yeast cells suggests both interesting differences from and similarities to the mammalian system.

1992 ◽  
Vol 12 (8) ◽  
pp. 3470-3481 ◽  
Author(s):  
J Chen ◽  
C Moore

Cleavage and polyadenylation of yeast precursor RNA require at least four functionally distinct factors (cleavage factor I [CF I], CF II, polyadenylation factor I [PF I], and poly(A) polymerase [PAP]) obtained from yeast whole cell extract. Cleavage of precursor occurs upon combination of the CF I and CF II fractions. The cleavage reaction proceeds in the absence of PAP or PF I. The cleavage factors exhibit low but detectable activity without exogenous ATP but are stimulated when this cofactor is included in the reaction. Cleavage by CF I and CF II is dependent on the presence of a (UA)6 sequence upstream of the GAL7 poly(A) site. The factors will also efficiently cleave precursor with the CYC1 poly(A) site. This RNA does not contain a UA repeat, and processing at this site is thought to be directed by a UAG...UAUGUA-type motif. Specific polyadenylation of a precleaved GAL7 RNA requires CF I, PF I, and a crude fraction containing PAP activity. The PAP fraction can be replaced by recombinant PAP, indicating that this enzyme is the only factor in this fraction needed for the reconstituted reaction. The poly(A) addition step is also dependent on the UA repeat. Since CF I is the only factor necessary for both cleavage and poly(A) addition, it is likely that this fraction contains a component which recognizes processing signals located upstream of the poly(A) site. The initial separation of processing factors in yeast cells suggests both interesting differences from and similarities to the mammalian system.


1989 ◽  
Vol 9 (1) ◽  
pp. 193-203
Author(s):  
G Christofori ◽  
W Keller

We have partially purified a poly(A) polymerase (PAP) from HeLa cell nuclear extract which is involved in the 3'-end formation of polyadenylated mRNA. PAP had a molecular weight of approximately 50 to 60 kilodaltons. In the presence of manganese ions, PAP was able to polyadenylate RNA nonspecifically. However, in the presence of magnesium ions PAP required the addition of a cleavage and polyadenylation factor to specifically polyadenylate pre-mRNAs that contain an intact AAUAAA sequence and end at the poly(A) addition site (precleaved RNA substrates). The purified fraction containing PAP was also required in combination with a cleavage and polyadenylation factor and a cleavage factor for the correct cleavage at the poly(A) site of pre-mRNAs. Since the two activities of the PAP fractions, PAP and cleavage activity, could not be separated by extensive purification, we concluded that the two activities are contained in a single component, a PAP that is also required for the specific cleavage preceding the polyadenylation of pre-mRNA.


2008 ◽  
Vol 7 (7) ◽  
pp. 1158-1167 ◽  
Author(s):  
Kristen Nordick ◽  
Matthew G. Hoffman ◽  
Joan L. Betz ◽  
Judith A. Jaehning

ABSTRACT The Paf1 complex (Paf1, Ctr9, Cdc73, Rtf1, and Leo1) is normally associated with RNA polymerase II (Pol II) throughout the transcription cycle. However, the loss of either Rtf1 or Cdc73 results in the detachment of the Paf1 complex from Pol II and the chromatin form of actively transcribed genes. Using functionally tagged forms of the Paf1 complex factors, we have determined that, except for the more loosely associated Rtf1, the remaining components stay stably associated with one another in an RNase-resistant complex after dissociation from Pol II and chromatin. The loss of Paf1, Ctr9, or to a lesser extent Cdc73 or Rtf1 results in reduced levels of serine 2 phosphorylation of the Pol II C-terminal domain and in increased read through of the MAK21 polyadenylation site. We found that the cleavage and polyadenylation factor Cft1 requires the Pol II-associated form of the Paf1 complex for full levels of interaction with the serine 5-phosphorylated form of Pol II. When the Paf1 complex is dissociated from Pol II, a direct interaction between Cft1 and the Paf1 complex can be detected. These results are consistent with the Paf1 complex providing a point of contact for recruitment of 3′-end processing factors at an early point in the transcription cycle. The lack of this connection helps to explain the defects in 3′-end formation observed in the absence of Paf1.


2018 ◽  
Author(s):  
Daniela Begolo ◽  
Isabel M Vincent ◽  
Federica Giordani ◽  
Michael J Witty ◽  
Timothy G Rowan ◽  
...  

AbstractKinetoplastid parasites - trypanosomes and leishmanias - infect millions of humans and cause economically devastating diseases of livestock, and the few existing drugs have serious deficiencies. Benzoxaborole-based compounds are very promising potential novel anti-trypanosomal therapies, with candidates already in human and animal clinical trials. Their targets in trypanosomes were hitherto unknown. We investigated the mechanism of action of several benzoxaboroles, including AN7973, an early candidate for veterinary trypanosomosis.In all kinetoplastids, transcription is polycistronic. Individual mRNA 5’-ends are created by trans splicing of a short leader sequence, with coupled polyadenylation of the preceding mRNA. Treatment of Trypanosoma brucei with AN7973 inhibited trans splicing within 1h, as judged by loss of the Y-structure splicing intermediate and reduced levels of mRNA, and accumulation of peri-nuclear granules which are typical for splicing inhibition. Methylation of the spliced leader precursor RNA was not affected, but more prolonged AN7973 treatment caused an increase in S-adenosyl methionine and methylated lysine. Together, these results indicate that mRNA processing is the primary target of AN7973. Polyadenylation is required for kinetoplastid trans splicing. The EC50 for AN7973 in T. brucei was increased three-fold by over-expression of the T. brucei cleavage and polyadenylation factor CPSF3, identifying CPSF3 as a potential molecular target. Our results thus chemically validate mRNA processing as a viable drug target in trypanosomes.Several other benzoxaboroles showed metabolomic and splicing effects that were similar to those of AN7973, identifying splicing inhibition as a common mode of action, and suggesting that it might be linked to subsequent changes in methylated metabolites. Granule formation, splicing inhibition, and resistance after CPSF3 expression did not, however, always correlate, and prolonged selection of trypanosomes in AN7973 resulted in only 1.5-fold resistance. This suggests that the modes of action of oxaboroles that target trypanosome mRNA processing may extend beyond CPSF3 inhibition.Author summaryTrypanosomes and leishmanias infect millions of humans and cause economically devastating diseases of livestock; the few existing drugs have serious deficiencies. Trypanosomosis of cattle, caused mainly by Trypanosoma congolense and Trypanosoma vivax, is a serious problem in Africa, because bovids are used not only for meat and milk, but also for traction. Only two drugs are in routine use for chemotherapy and chemoprophylaxis of bovine trypanosomosis. A single injection of the benzoxaborole compound AN7973 was sufficient to cure T. congolense infection in cattle and goats, but AN7973 was less effective against T. vivax. This precluded development of AN7973 as a commercially viable treatment against cattle trypanosomosis, but it could still have potential for diseases caused by other salivarian trypanosomes.We used a large range of methods to find out how AN7973 kills trypanosomes, and compared it with several other benzoxaboroles. AN7973 and some of the other compounds had effects on parasite metabolism that resembled those previously seen for a benzoxaborole that is being tested for human sleeping sickness. The most rapid effect of AN7973, however, was on processing of trypanosome mRNA. As a consequence, amounts of mRNA decreased and synthesis of proteins stopped. We conclude that AN7973 and some other benzoxaboroles kill trypanosomes by stopping gene expression.


1989 ◽  
Vol 9 (1) ◽  
pp. 193-203 ◽  
Author(s):  
G Christofori ◽  
W Keller

We have partially purified a poly(A) polymerase (PAP) from HeLa cell nuclear extract which is involved in the 3'-end formation of polyadenylated mRNA. PAP had a molecular weight of approximately 50 to 60 kilodaltons. In the presence of manganese ions, PAP was able to polyadenylate RNA nonspecifically. However, in the presence of magnesium ions PAP required the addition of a cleavage and polyadenylation factor to specifically polyadenylate pre-mRNAs that contain an intact AAUAAA sequence and end at the poly(A) addition site (precleaved RNA substrates). The purified fraction containing PAP was also required in combination with a cleavage and polyadenylation factor and a cleavage factor for the correct cleavage at the poly(A) site of pre-mRNAs. Since the two activities of the PAP fractions, PAP and cleavage activity, could not be separated by extensive purification, we concluded that the two activities are contained in a single component, a PAP that is also required for the specific cleavage preceding the polyadenylation of pre-mRNA.


1997 ◽  
Vol 17 (3) ◽  
pp. 1102-1109 ◽  
Author(s):  
N Amrani ◽  
M Minet ◽  
F Wyers ◽  
M E Dufour ◽  
L P Aggerbeck ◽  
...  

Cleavage and polyadenylation factor I (CF I) is one of four factors required in vitro for yeast pre-mRNA 3'-end processing. Two protein components of this factor, encoded by genes RNA14 and RNA15, have already been identified. We describe here another gene, PCF11 (for protein 1 of CF I), that genetically interacts with RNA14 and RNA15 and which presumably codes for a third protein component of CF I. This gene was isolated in a two-hybrid screening designed to identify proteins interacting with Rna14 and Rna15. PCF11 is an essential gene encoding for a protein of 626 amino acids having an apparent molecular mass of 70 kDa. Thermosensitive mutations in PCF11 are synergistically lethal with thermosensitive alleles of RNA14 and RNA15. The Pcf11-2 thermosensitive strain shows a shortening of the poly(A) tails and a strong decrease in the steady-state level of actin transcripts after a shift to the nonpermissive temperature as do the thermosensitive alleles of RNA14 and RNA15. Extracts from the pcf11-1 and pcf11-2 thermosensitive strains and the wild-type strain, when Pcf11 is neutralized by specific antibodies, are deficient in cleavage and polyadenylation. Moreover, fractions obtained by anion-exchange chromatography of extracts from the wild-type strain contain both Pcf11 and Rna15 in the same fractions, as shown by immunoblotting with a Pcf11-specific antibody.


2001 ◽  
Vol 21 (23) ◽  
pp. 8045-8055 ◽  
Author(s):  
Stefan Gross ◽  
Claire L. Moore

ABSTRACT In Saccharomyces cerevisiae, four factors [cleavage factor I (CF I), CF II, polyadenylation factor I (PF I), and poly(A) polymerase (PAP)] are required for maturation of the 3′ end of the mRNA. CF I and CF II are required for cleavage; a complex of PAP and PF I, which includes CF II subunits, participates in polyadenylation, along with CF I. These factors are directed to the appropriate site on the mRNA by two sequences: one A-rich and one UA-rich. CF I contains five proteins, two of which, Rna15 and Hrp1, interact with the mRNA through RNA recognition motif-type RNA binding motifs. Previous work demonstrated that the UV cross-linking of purified Hrp1 to RNA required the UA-rich element, but the contact point of Rna15 was not known. We show here that Rna15 does not recognize a particular sequence in the absence of other proteins. However, in complex with Hrp1 and Rna14, Rna15 specifically interacts with the A-rich element. The Pcf11 and Clp1 subunits of CF I are not needed to position Rna15 at this site. This interaction is essential to the function of CF I. A mutant Rna15 with decreased affinity for RNA is defective for in vitro RNA processing and lethal in vivo, while an RNA with a mutation in the A-rich element is not processed in vitro and can no longer be UV cross-linked to the Rna15 subunit assembled into CF I. Thus, the recognition of the A-rich element depends on the tethering of Rna15 through an Rna14 bridge to Hrp1 bound to the UA-rich motif. These results illustrate that the yeast 3′ end is defined and processed by a mechanism surprisingly different from that used by the mammalian system.


1985 ◽  
Vol 5 (11) ◽  
pp. 2975-2983 ◽  
Author(s):  
R P Hart ◽  
M A McDevitt ◽  
H Ali ◽  
J R Nevins

In addition to the highly conserved AATAAA sequence, there is a requirement for specific sequences downstream of polyadenylic acid [poly(A)] cleavage sites to generate correct mRNA 3' termini. Previous experiments demonstrated that 35 nucleotides downstream of the E2A poly(A) site were sufficient but 20 nucleotides were not. The construction and assay of bidirectional deletion mutants in the adenovirus E2A poly(A) site indicates that there may be redundant multiple sequence elements that affect poly(A) site usage. Sequences between the poly(A) site and 31 nucleotides downstream were not essential for efficient cleavage. Further deletion downstream (3' to +31) abolished efficient cleavage in certain constructions but not all. Between +20 and +38 the sequence T(A/G)TTTTT was duplicated. Function was retained when one copy of the sequence was present, suggesting that this sequence represents an essential element. There may also be additional sequences distal to +43 that can function. To establish common features of poly(A) sites, we also analyzed the early simian virus 40 (SV40) poly(A) site for essential sequences. An SV40 poly(A) site deletion that retained 18 nucleotides downstream of the cleavage site was fully functional while one that retained 5 nucleotides downstream was not, thus defining sequences required for cleavage. Comparison of the SV40 sequences with those from E2A did not reveal significant homologies. Nevertheless, normal cleavage and polyadenylation could be restored at the early SV40 poly(A) site by the addition of downstream sequences from the adenovirus E2A poly(A) site to the SV40 +5 mutant. The same sequences that were required in the E2A site for efficient cleavage also restored activity to the SV40 poly(A) site.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 531-540
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II (ADH2) gene of the yeast, Saccharomyces cerevisiae, is not transcribed during growth on fermentable carbon sources such as glucose. Growth of yeast cells in a medium containing only nonfermentable carbon sources leads to a marked increase or derepression of ADH2 expression. The recessive mutation, adr6-1, leads to an inability to fully derepress ADH2 expression and to an inability to sporulate. The ADR6 gene product appears to act directly or indirectly on ADH2 sequences 3' to or including the presumptive TATAA box. The upstream activating sequence (UAS) located 5' to the TATAA box is not required for the Adr6- phenotype. Here, we describe the isolation of a recombinant plasmid containing the wild-type ADR6 gene. ADR6 codes for a 4.4-kb RNA which is present during growth both on glucose and on nonfermentable carbon sources. Disruption of the ADR6 transcription unit led to viable cells with decreased ADHII activity and an inability to sporulate. This indicates that both phenotypes result from mutations within a single gene and that the adr6-1 allele was representative of mutations at this locus. The ADR6 gene mapped to the left arm of chromosome XVI at a site 18 centimorgans from the centromere.


1989 ◽  
Vol 9 (2) ◽  
pp. 726-738
Author(s):  
M L Peterson ◽  
R P Perry

The relative abundance of the mRNAs encoding the membrane (mu m) and secreted (mu s) forms of immunoglobulin mu heavy chain is regulated during B-cell maturation by a change in the mode of RNA processing. Current models to explain this regulation involve either competition between cleavage-polyadenylation at the proximal (mu s) poly(A) site and cleavage-polyadenylation at the distal (mu m) poly(A) site [poly(A) site model] or competition between cleavage-polyadenylation at the mu s poly(A) site and splicing of the C mu 4 and M1 exons, which eliminates the mu s site (mu s site-splice model). To test certain predictions of these models and to determine whether there is a unique structural feature of the mu s poly(A) site that is essential for regulation, we constructed modified mu genes in which the mu s or mu m poly(A) site was replaced by other poly(A) sites and then studied the transient expression of these genes in cells representative of both early- and late-stage lymphocytes. Substitutions at the mu s site dramatically altered the relative usage of this site and caused corresponding reciprocal changes in the usage of the mu m site. Despite these changes, use of the proximal site was still usually higher in plasmacytomas than in pre-B cells, indicating that regulation does not depend on a unique feature of the mu s poly(A) site. Replacement of the distal (mu m) site had no detectable effect on the usage of the mu s site in either plasmacytomas or pre-B cells. These findings are inconsistent with the poly(A) site model. In addition, we noted that in a wide variety of organisms, the sequence at the 5' splice junction of the C mu 4-to-M1 intron is significantly different from the consensus 5' splice junction sequence and is therefore suboptimal with respect to its complementary base pairing with U1 small nuclear RNA. When we mutated this suboptimal sequence into the consensus sequence, the mu mRNA production in plasmacytoma cells was shifted from predominantly mu s to exclusively mu m. This result unequivocally demonstrated that splicing of the C mu 4-to-M1 exon is in competition with usage of the mu s poly(A) site. A key feature of this regulatory phenomenon appears to be the appropriately balanced efficiencies of these two processing reactions. Consistent with predictions of the mu s site-splice model, B cells were found to contain mu m precursor RNA that had undergone the C mu 4-to-M1 splice but had not yet been polyadenylated at the mu m site.


Sign in / Sign up

Export Citation Format

Share Document