A mutant androgen receptor from patients with Reifenstein syndrome: identification of the function of a conserved alanine residue in the D box of steroid receptors

1993 ◽  
Vol 13 (12) ◽  
pp. 7850-7858
Author(s):  
F Kaspar ◽  
H Klocker ◽  
A Denninger ◽  
A C Cato

Reifenstein syndrome is an eponymic term that describes partial androgen-insensitive disorders. Androgen receptor isolated from five patients with this syndrome contains a specific mutation in the DNA binding domain of the receptor. This mutation converts an alanine to a threonine at position 596 next to the zinc catenation site at the second finger. The threonine 596 mutant receptor mediated normal androgen response at promoters with closely positioned multiple regulatory elements for the androgen receptor and other transcription factors. Promoters with single isolated androgen response elements were not transactivated by the mutant receptor. In in vitro receptor-DNA binding studies, interaction with DNA by the mutant receptor was achieved only in the presence of an anti-androgen receptor antibody. Exchanging alanine 596 in the wild-type androgen receptor with serine or valine produced mutants with properties indistinguishable from those of the naturally occurring threonine 596 mutant receptor. These results indicate that an alanine residue at position 596 contributes important structural and functional activities to the androgen receptor. In the androgen receptor from the patients with Reifenstein syndrome, in which this alanine is converted to a threonine, wild-type receptor properties can be restored by exchanging an additional threonine at position 602 to an alanine. An alanine residue at position 596 or 602 in the DNA binding domain of the androgen receptor is therefore important for the full function of this receptor. In all steroid receptors that bind the core sequence AGAACANNNTGTTCT, an alanine residue is also present at a position equivalent to alanine 596 in the androgen receptor.

1993 ◽  
Vol 13 (12) ◽  
pp. 7850-7858 ◽  
Author(s):  
F Kaspar ◽  
H Klocker ◽  
A Denninger ◽  
A C Cato

Reifenstein syndrome is an eponymic term that describes partial androgen-insensitive disorders. Androgen receptor isolated from five patients with this syndrome contains a specific mutation in the DNA binding domain of the receptor. This mutation converts an alanine to a threonine at position 596 next to the zinc catenation site at the second finger. The threonine 596 mutant receptor mediated normal androgen response at promoters with closely positioned multiple regulatory elements for the androgen receptor and other transcription factors. Promoters with single isolated androgen response elements were not transactivated by the mutant receptor. In in vitro receptor-DNA binding studies, interaction with DNA by the mutant receptor was achieved only in the presence of an anti-androgen receptor antibody. Exchanging alanine 596 in the wild-type androgen receptor with serine or valine produced mutants with properties indistinguishable from those of the naturally occurring threonine 596 mutant receptor. These results indicate that an alanine residue at position 596 contributes important structural and functional activities to the androgen receptor. In the androgen receptor from the patients with Reifenstein syndrome, in which this alanine is converted to a threonine, wild-type receptor properties can be restored by exchanging an additional threonine at position 602 to an alanine. An alanine residue at position 596 or 602 in the DNA binding domain of the androgen receptor is therefore important for the full function of this receptor. In all steroid receptors that bind the core sequence AGAACANNNTGTTCT, an alanine residue is also present at a position equivalent to alanine 596 in the androgen receptor.


2003 ◽  
Vol 369 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Annemie HAELENS ◽  
Guy VERRIJDT ◽  
Leen CALLEWAERT ◽  
Valerie CHRISTIAENS ◽  
Kris SCHAUWAERS ◽  
...  

The androgen receptor has a subset of target DNA sequences, which are not recognized by any other steroid receptors. The androgen selectivity of these sequences was proposed to be the consequence of the ability of the androgen receptor to dimerize on direct repeats of 5′-TGTTCT-3′-like sequences. This is in contrast with the classical non-selective elements consisting of inverted repeats of the 5′-TGTTCT-3′ elements separated by three nucleotides and which are recognized by other steroid receptors in addition to the androgen receptor. We demonstrate that while the DNA-binding domain of the oestrogen receptor is unable to dimerize on direct repeats, dimeric binding can be rescued by replacing the second Zn finger and part of the hinge region by the corresponding fragment of the androgen receptor, but not the glucocorticoid receptor. In this study, we investigate the androgen receptor binding to all natural androgen-selective response elements described so far. We show that a 12-amino acid C-terminal extension of the DNA-binding domain is required for high-affinity binding of the androgen receptor to all these elements. For one androgen-specific low-affinity binding site, the flanking sequences do not contribute to the invitro affinity of the androgen receptor DNA-binding domain. Surprisingly, however, they control the transcriptional activity of the androgen receptor in transient transfection experiments. In conclusion, we give evidence that the alternative DNA-dependent dimerization of the androgen receptor on direct repeats is a general mechanism for androgen specificity in which the second Zn finger and hinge region are involved. In addition, the sequences flanking an androgen-response element can control the activity of the androgen receptor.


2000 ◽  
Vol 53 (2) ◽  
pp. 83-88 ◽  
Author(s):  
Yvonne Lundberg Giwercman ◽  
Andrej Nikoshkov ◽  
Kristina Lindsten ◽  
Birgitta Byström ◽  
Åke Pousette ◽  
...  

1992 ◽  
Vol 12 (3) ◽  
pp. 1209-1217
Author(s):  
C F Hardy ◽  
D Balderes ◽  
D Shore

RAP1 is an essential sequence-specific DNA-binding protein in Saccharomyces cerevisiae whose binding sites are found in a large number of promoters, where they function as upstream activation sites, and at the silencer elements of the HMR and HML mating-type loci, where they are important for repression. We have examined the involvement of specific regions of the RAP1 protein in both repression and activation of transcription by studying the properties of a series of hybrid proteins containing RAP1 sequences fused to the DNA-binding domain of the yeast protein GAL4 (amino acids 1 to 147). GAL4 DNA-binding domain/RAP1 hybrids containing only the carboxy-terminal third of the RAP1 protein (which lacks the RAP1 DNA-binding domain) function as transcriptional activators of a reporter gene containing upstream GAL4 binding sites. Expression of some hybrids from the strong ADH1 promoter on multicopy plasmids has a dominant negative effect on silencers, leading to either partial or complete derepression of normally silenced genes. The GAL4/RAP1 hybrids have different effects on wild-type and several mutated but functional silencers. Silencers lacking either an autonomously replicating sequence consensus element or the RAP1 binding site are strongly derepressed, whereas the wild-type silencer or a silencer containing a deletion of the binding site for another silencer-binding protein, ABF1, are only weakly affected by hybrid expression. By examining a series of GAL4 DNA-binding domain/RAP1 hybrids, we have mapped the transcriptional activation and derepression functions to specific parts of the RAP1 carboxy terminus.(ABSTRACT TRUNCATED AT 250 WORDS)


2017 ◽  
Vol 11 (1) ◽  
pp. 40-45 ◽  
Author(s):  
G. Eastman Welsford ◽  
Rikke Munk ◽  
Daniel A.F. Villagómez ◽  
Poul Hyttel ◽  
W. Allan King ◽  
...  

2020 ◽  
Vol 1864 (1) ◽  
pp. 129440 ◽  
Author(s):  
Ana Sara Gomes ◽  
Helena Ramos ◽  
Sara Gomes ◽  
Joana B. Loureiro ◽  
Joana Soares ◽  
...  

1990 ◽  
Vol 10 (9) ◽  
pp. 4778-4787 ◽  
Author(s):  
C Buchman ◽  
P Skroch ◽  
W Dixon ◽  
T D Tullius ◽  
M Karin

CUP2 is a copper-dependent transcriptional activator of the yeast CUP1 metallothionein gene. In the presence of Cu+ and Ag+) ions its DNA-binding domain is thought to fold as a cysteine-coordinated Cu cluster which recognizes the palindromic CUP1 upstream activation sequence (UASc). Using mobility shift, methylation interference, and DNase I and hydroxyl radical footprinting assays, we examined the interaction of wild-type and variant CUP2 proteins produced in Escherichia coli with the UASc. Our results suggest that CUP2 has a complex Cu-coordinated DNA-binding domain containing different parts that function as DNA-binding elements recognizing distinct sequence motifs embedded within the UASc. A single-amino-acid substitution of cysteine 11 with a tyrosine results in decreased Cu binding, apparent inactivation of one of the DNA-binding elements and a dramatic change in the recognition properties of CUP2. This variant protein interacts with only one part of the wild-type site and prefers to bind to a different half-site from the wild-type protein. Although the variant has about 10% of wild-type DNA-binding activity, it appears to be completely incapable of activating transcription.


Biochemistry ◽  
1997 ◽  
Vol 36 (37) ◽  
pp. 11188-11197 ◽  
Author(s):  
Helena Berglund ◽  
Magnus Wolf-Watz ◽  
Thomas Lundbäck ◽  
Susanne van den Berg ◽  
Torleif Härd

Sign in / Sign up

Export Citation Format

Share Document