A tightly associated serine/threonine protein kinase regulates phosphoinositide 3-kinase activity

1993 ◽  
Vol 13 (3) ◽  
pp. 1657-1665
Author(s):  
C L Carpenter ◽  
K R Auger ◽  
B C Duckworth ◽  
W M Hou ◽  
B Schaffhausen ◽  
...  

We identified a serine/threonine protein kinase that is associated with and phosphorylates phosphoinositide 3-kinase (PtdIns 3-kinase). The serine kinase phosphorylates both the 85- and 110-kDa subunits of PtdIns 3-kinase and purifies with it from rat liver and immunoprecipitates with antibodies raised to the 85-kDa subunit. Tryptic phosphopeptide maps indicate that p85 from polyomavirus middle T-transformed cells is phosphorylated in vivo at three sites phosphorylated in vitro by the associated serine kinase. The 85-kDa subunit of PtdIns 3-kinase is phosphorylated in vitro on serine at a stoichiometry of approximately 1 mol of phosphate per mol of p85. This phosphorylation results in a three- to sevenfold decrease in PtdIns 3-kinase activity. Dephosphorylation with protein phosphatase 2A reverses the inhibition. This suggests that the association of protein phosphatase 2A with middle T antigen may function to activate PtdIns 3-kinase.

1993 ◽  
Vol 13 (3) ◽  
pp. 1657-1665 ◽  
Author(s):  
C L Carpenter ◽  
K R Auger ◽  
B C Duckworth ◽  
W M Hou ◽  
B Schaffhausen ◽  
...  

We identified a serine/threonine protein kinase that is associated with and phosphorylates phosphoinositide 3-kinase (PtdIns 3-kinase). The serine kinase phosphorylates both the 85- and 110-kDa subunits of PtdIns 3-kinase and purifies with it from rat liver and immunoprecipitates with antibodies raised to the 85-kDa subunit. Tryptic phosphopeptide maps indicate that p85 from polyomavirus middle T-transformed cells is phosphorylated in vivo at three sites phosphorylated in vitro by the associated serine kinase. The 85-kDa subunit of PtdIns 3-kinase is phosphorylated in vitro on serine at a stoichiometry of approximately 1 mol of phosphate per mol of p85. This phosphorylation results in a three- to sevenfold decrease in PtdIns 3-kinase activity. Dephosphorylation with protein phosphatase 2A reverses the inhibition. This suggests that the association of protein phosphatase 2A with middle T antigen may function to activate PtdIns 3-kinase.


2000 ◽  
Vol 20 (21) ◽  
pp. 8143-8156 ◽  
Author(s):  
Haifeng Yang ◽  
Wei Jiang ◽  
Matthew Gentry ◽  
Richard L. Hallberg

ABSTRACT CDC55 encodes a Saccharomyces cerevisiaeprotein phosphatase 2A (PP2A) regulatory subunit.cdc55-null cells growing at low temperature exhibit a failure of cytokinesis and produce abnormally elongated buds, butcdc55-null cells producing the cyclin-dependent kinase Cdc28-Y19F, which is unable to be inhibited by Y19 phosphorylation, show a loss of the abnormal morphology. Furthermore,cdc55-null cells exhibit a hyperphosphorylation of Y19. For these reasons, we have examined in wild-type and cdc55-null cells the levels and activities of the kinase (Swe1p) and phosphatase (Mih1p) that normally regulate the extent of Cdc28 Y19 phosphorylation. We find that Mih1p levels are comparable in the two strains, and an estimate of the in vivo and in vitro phosphatase activity of this enzyme in the two cell types indicates no marked differences. By contrast, while Swe1p levels are similar in unsynchronized and S-phase-arrested wild-type and cdc55-null cells, Swe1 kinase is found at elevated levels in mitosis-arrestedcdc55-null cells. This excess Swe1p incdc55-null cells is the result of ectopic stabilization of this protein during G2 and M, thereby accounting for the accumulation of Swe1p in mitosis-arrested cells. We also present evidence indicating that, in cdc55-null cells, misregulated PP2A phosphatase activity is the cause of both the ectopic stabilization of Swe1p and the production of the morphologically abnormal phenotype.


2006 ◽  
Vol 26 (11) ◽  
pp. 4017-4027 ◽  
Author(s):  
Ana M. Gil-Bernabé ◽  
Francisco Romero ◽  
M. Cristina Limón-Mortés ◽  
María Tortolero

ABSTRACT Sister chromatid segregation is triggered at the metaphase-to-anaphase transition by the activation of the protease separase. For most of the cell cycle, separase activity is kept in check by its association with the inhibitory chaperone securin. Activation of separase occurs at anaphase onset, when securin is targeted for destruction by the anaphase-promoting complex or cyclosome E3 ubiquitin protein ligase. This results in the release of the cohesins from chromosomes, which in turn allows the segregation of sister chromatids to opposite spindle poles. Here we show that human securin (hSecurin) forms a complex with enzymatically active protein phosphatase 2A (PP2A) and that it is a substrate of the phosphatase, both in vitro and in vivo. Treatment of cells with okadaic acid, a potent inhibitor of PP2A, results in various hyperphosphorylated forms of hSecurin which are extremely unstable, due to the action of the Skp1/Cul1/F-box protein complex ubiquitin ligase. We propose that PP2A regulates hSecurin levels by counteracting its phosphorylation, which promotes its degradation. Misregulation of this process may lead to the formation of tumors, in which overproduction of hSecurin is often observed.


1993 ◽  
Vol 106 (1) ◽  
pp. 219-226 ◽  
Author(s):  
E. Kam ◽  
K.A. Resing ◽  
S.K. Lim ◽  
B.A. Dale

The aggregation of cellular intermediate filaments is an important step in the terminal differentiation of keratinocytes. It has been shown that epidermal filaggrin can cause intermediate filaments to aggregate in vitro and may also have the same function in vivo. Filaggrin is derived via dephosphorylation and proteolysis from a highly phosphorylated precursor, profilaggrin, which is found in the granular layer of the epidermis. Using casein kinase II phosphorylated filaggrin as substrate, a profilaggrin phosphatase has been partially purified from rat epidermal homogenate by three chromatographic steps (DE52, hydroxylapatite and S200 gel filtration). Profilaggrin phosphatase activity eluted from the last column has a Km of 0.12 mM and a Vmax of 8 nmol/mg/min with respect to phosphofilaggrin. Results obtained by initial rate analysis showed that the enzymatic activity is not affected by phospho-tyrosyl phosphatase inhibitors and the active fractions preferentially dephosphorylate the alpha subunit of phosphorylase kinase which has been phosphorylated by cAMP-dependent kinase. These results suggest that epidermal profilaggrin phosphatase is not a phospho-tyrosyl phosphatase or a type 1 phospho-seryl/phospho-threonyl phosphatase. Dephosphorylation is not affected by EDTA, calcium or magnesium, but is very sensitive to okadaic acid inhibition (IC50 = 80 pM), suggesting that the enzymatic activity is related to that of the protein phosphatase 2A (PP2A).(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 6 (6) ◽  
pp. 2033-2040 ◽  
Author(s):  
H Piwnica-Worms ◽  
D R Kaplan ◽  
M Whitman ◽  
T M Roberts

We have constructed a recombinant murine retrovirus which efficiently transduces avian pp60c-src into murine cells and which is easily rescued from infected cells in plasmid form. To characterize the virus, several randomly selected NIH 3T3 lines were isolated after infection with recombinant retroviral stocks. All lines overproduced avian pp60c-src and appeared morphologically normal. Immunoprecipitates made from these lines with antisera specific for pp60c-src were tested for their kinase activities in vitro. We find that both autokinase and enolase kinase activities increase proportionately with the level of pp60c-src in the immunoprecipitates. To further test the authenticity of the pp60c-src encoded by the retroviral vector, these analyses were repeated in the presence of polyomavirus middle T antigen. Avian pp60c-src was activated as a protein kinase, indicating that the virally encoded pp60c-src interacts normally with middle T antigen. Interestingly, by increasing the intracellular levels of pp60c-src 15-fold over normal endogenous levels, we were unable to obtain a proportionate increase in the amount of middle-T-antigen-pp60c-src complex. Finally, using the shuttle features designed into the vector, we have isolated the first fully processed cDNA encoding functional avian pp60c-src X pp60c-src synthesized in vitro with this cDNA had intrinsic protein kinase activity and no detectable phosphatidylinositol kinase activity.


2015 ◽  
Vol 89 (8) ◽  
pp. 4191-4200 ◽  
Author(s):  
Hyun Jin Kwun ◽  
Masahiro Shuda ◽  
Carlos J. Camacho ◽  
Armin M. Gamper ◽  
Mamie Thant ◽  
...  

ABSTRACTMerkel cell polyomavirus (MCV) is a newly discovered human cancer virus encoding a small T (sT) oncoprotein. We performed MCV sT FLAG-affinity purification followed by mass spectroscopy (MS) analysis, which identified several protein phosphatases (PP), including PP2A A and C subunits and PP4C, as potential cellular interacting proteins. PP2A targeting is critical for the transforming properties of nonhuman polyomaviruses, such as simian virus 40 (SV40), but is not required for MCV sT-induced rodent cell transformation. We compared similarities and differences in PP2A binding between MCV and SV40 sT. While SV40 sT coimmunopurified with subunits PP2A Aα and PP2A C, MCV sT coimmunopurified with PP2A Aα, PP2A Aβ, and PP2A C. Scanning alanine mutagenesis at 29 sites across the MCV sT protein revealed that PP2A-binding domains lie on the opposite molecular surface from a previously described large T stabilization domain (LSD) loop that binds E3 ligases, such as Fbw7. MCV sT-PP2A interactions can be functionally distinguished by mutagenesis from MCV sT LSD-dependent 4E-BP1 hyperphosphorylation and viral DNA replication enhancement. MCV sT has a restricted range for PP2A B subunit substitution, inhibiting only the assembly of B56α into the phosphatase holoenzyme. In contrast, SV40 sT inhibits the assembly of B55α, B56α and B56ε into PP2A. We conclude that MCV sT is required for Merkel cell carcinoma growth, but itsin vitrotransforming activity depends on LSD interactions rather than PP2A targeting.IMPORTANCEMerkel cell polyomavirus is a newly discovered human cancer virus that promotes cancer, in part, through expression of its small T (sT) oncoprotein. Animal polyomavirus sT oncoproteins have been found to cause experimental tumors by blocking the activities of a group of phosphatases called protein phosphatase 2A (PP2A). Our structural analysis reveals that MCV sT also displaces the B subunit of PP2A to inhibit PP2A activity. MCV sT, however, only displaces a restricted subset of PP2A B subunits, which is insufficient to cause tumor cell formationin vitro. MCV sT instead transforms tumor cells through another region called the large T stabilization domain. The PP2A targeting and transforming activities lie on opposite faces of the MCV sT molecule and can be genetically separated from each other.


2001 ◽  
Vol 358 (2) ◽  
pp. 281-285 ◽  
Author(s):  
Egle BALCIUNAITE ◽  
Andrius KAZLAUSKAS

At least two signalling systems have the potential to contribute to the activation of protein kinase C (PKC) family members such as PKC∊. One of these is phosphoinositide 3-kinase (PI 3-kinase), whose lipid products activate PKC∊ in vitro and in living cells. The recent observation that there are multiple waves of PI 3-kinase and PKC∊ activity within the G0-to-S phase interval provides a new opportunity to investigate the relationship between these two signalling enzymes in vivo. We have assessed the relative importance of the early and late waves of PI 3-kinase activity for the corresponding waves of PKC∊ activity. Blocking the first phase of PI 3-kinase activity inhibited both early and late activation of PKC∊. In contrast, the second wave of PI 3-kinase activity was dispensable for late activation of PKC∊. These findings suggested that early PI 3-kinase activation induced a stable change in PKC∊, which predisposed it to subsequent activation by lipid cofactors. Indeed, partial proteolysis of PKC∊ indicated that early activation of PI 3-kinase led to a conformation change in PKC∊ that persisted as the activity of PKC∊ cycled. We propose a two-step hypothesis for the activation of PKC∊ in vivo. One step is stable and depends on PI 3-kinase, whereas the other is transient and may depend on the availability of lipid cofactors. Finally, these studies reveal that PI 3-kinase and PKC∊ are capable of communicating over a relatively long time interval and begin to elucidate the mechanism.


Sign in / Sign up

Export Citation Format

Share Document