An octamer motif contributes to the expression of the retinoic acid-regulated zinc finger gene Rex-1 (Zfp-42) in F9 teratocarcinoma cells

1993 ◽  
Vol 13 (5) ◽  
pp. 2919-2928
Author(s):  
B A Hosler ◽  
M B Rogers ◽  
C A Kozak ◽  
L J Gudas

The message for the zinc finger gene Rex-1 (Zfp-42) is expressed in undifferentiated murine F9 teratocarcinoma cells and embryonic stem cells. Expression of Rex-1 is reduced at the transcriptional level when F9 cells are induced by the addition of retinoic acid (RA) to differentiate. We have isolated genomic DNA for the Rex-1 gene (Zfp-42), characterized the gene's structure, and mapped the gene to mouse chromosome 8. Promoter elements contributing to the regulation of the Rex-1 promoter in F9 cells have been identified. A region required for Rex-1 promoter activity in F9 stem cells contains an octamer motif (ATTTGCAT) which is a binding site for octamer transcription factor members of the POU domain family of DNA-binding proteins. Rex-1 reporter plasmids including this octamer site also exhibited reduced expression in F9 cells treated with RA. Thus, the octamer motif is a regulatory element required for the activity of the Rex-1 promoter in F9 stem cells, and this motif contributes to the negative regulation by RA of the transcription of the Rex-1 gene. As an initial confirmation of the in vivo relevance of the isolated fragment, a larger Rex-1 promoter fragment, also containing the octamer site, was able to promote expression of the bacterial lacZ gene in mouse embryos at the morula stage.

1993 ◽  
Vol 13 (5) ◽  
pp. 2919-2928 ◽  
Author(s):  
B A Hosler ◽  
M B Rogers ◽  
C A Kozak ◽  
L J Gudas

The message for the zinc finger gene Rex-1 (Zfp-42) is expressed in undifferentiated murine F9 teratocarcinoma cells and embryonic stem cells. Expression of Rex-1 is reduced at the transcriptional level when F9 cells are induced by the addition of retinoic acid (RA) to differentiate. We have isolated genomic DNA for the Rex-1 gene (Zfp-42), characterized the gene's structure, and mapped the gene to mouse chromosome 8. Promoter elements contributing to the regulation of the Rex-1 promoter in F9 cells have been identified. A region required for Rex-1 promoter activity in F9 stem cells contains an octamer motif (ATTTGCAT) which is a binding site for octamer transcription factor members of the POU domain family of DNA-binding proteins. Rex-1 reporter plasmids including this octamer site also exhibited reduced expression in F9 cells treated with RA. Thus, the octamer motif is a regulatory element required for the activity of the Rex-1 promoter in F9 stem cells, and this motif contributes to the negative regulation by RA of the transcription of the Rex-1 gene. As an initial confirmation of the in vivo relevance of the isolated fragment, a larger Rex-1 promoter fragment, also containing the octamer site, was able to promote expression of the bacterial lacZ gene in mouse embryos at the morula stage.


2003 ◽  
Vol 63 (2) ◽  
pp. 245-252 ◽  
Author(s):  
L. R. Ferreira ◽  
C. E. E. Velano ◽  
E. C. Braga ◽  
C. C. Paula ◽  
H. Martélli-Junior ◽  
...  

Nascent procollagen peptides and other secretory proteins are transported across the endoplasmic reticulum (RE) membrane through a protein-conducting channel called the translocon. Sec61alpha, a multispanning membrane translocon protein, has been implicated as essential for translocation of polypeptides chains into the cisterns of the ER. However, it is not known whether Sec61alpha is ubiquitously expressed in collagen producing teratocarcinoma cells. Furthermore, the production, expression, and utilization of Sec61alpha may depend on the cell differentiation stage. Stem cells from many cultured teratocarcinoma cell lines such as F9 and P19 cells are capable of differentiation in response to low retinoic acid concentrations. This differentiation of the tumorigenic stem cells results in tumorigenicity loss. For this study, mouse F9 and P19 teratocarcinoma cells were grown in culture medium treated with or without retinoic acid. Expression of Sec61alpha was determined by reverse trancriptase polimerase chain reaction (RT-PCR). In untreated conditions, F9 cells expressed undetected Sec61alpha amounts. It was also demonstrated that Sec61alpha expression is stimulated in F9 cells after retinoic acid treatment for 72 hours. No changes were found in Sec61alpha expression in P19 cells after retinoic acid treatment. These data indicate that the expression of Sec61alpha is enhanced with retinoic acid induced differentiation of F9 teratocarcinoma cells.


1991 ◽  
Vol 274 (3) ◽  
pp. 673-678 ◽  
Author(s):  
M Gianni ◽  
M Studer ◽  
G Carpani ◽  
M Terao ◽  
E Garattini

All-trans retinoic acid (RA) induces alkaline phosphatase (ALP) activity by 3-8-fold in murine F9 teratocarcinoma cells, in parallel with their differentiation towards primitive endoderm. The elevation of ALP activity is associated with increases in the amounts of liver/bone/kidney-type ALP protein and the respective transcript. These effects of RA are due to activation of ALP gene transcription rather than to an increase in the half-life of the mRNA. Induction of ALP mRNA does not require de novo protein synthesis, since it is not blocked by treatment with cycloheximide. Dibutyryl cyclic AMP, which is known to induce further differentiation of F9 cells from the primitive to the parietal endoderm, blocks the induction of ALP mRNA by RA.


1989 ◽  
Vol 9 (12) ◽  
pp. 5623-5629
Author(s):  
B A Hosler ◽  
G J LaRosa ◽  
J F Grippo ◽  
L J Gudas

In the presence of retinoic acid (RA), cultured F9 murine teratocarcinoma stem cells differentiate into nontumorigenic cells resembling the extraembryonic endoderm of the early mouse embryo. By differential hybridization screening of an F9 cell cDNA library, we isolated a 1,745-nucleotide cDNA for a gene, REX-1 (for reduced expression), whose steady-state mRNA level began to decline in F9 cells in monolayer culture within 12 h after the addition of RA. By 48 to 96 h after RA treatment of F9 cells in monolayer culture, the REX-1 steady-state mRNA level was more than sevenfold lower than the level in undifferentiated F9 stem cells. The REX-1 mRNA decrease did not result from the reduction in cell growth rate associated with the differentiation process, since the REX-1 mRNA level did not decline in F9 cells that were partially growth arrested after 48 h of isoleucine deprivation. The RA-associated REX-1 mRNA decrease resulted primarily from a reduction in the transcription rate of the REX-1 gene in the presence of RA. In contrast to results in F9 cells, we have been unable thus far to detect REX-1 mRNA in day 7.5 to 12.5 mouse embryo RNA samples or in the P19 teratocarcinoma stem cell line. The putative REX-1 protein identified by DNA sequence analysis contains four repeats of the zinc finger nucleic acid-binding motif and a potential acidic activator domain, suggesting that REX-1 encodes a regulatory protein. The REX-1 gene is not identical to the previously reported murine genes that encode zinc finger-containing proteins.


1989 ◽  
Vol 9 (12) ◽  
pp. 5623-5629 ◽  
Author(s):  
B A Hosler ◽  
G J LaRosa ◽  
J F Grippo ◽  
L J Gudas

In the presence of retinoic acid (RA), cultured F9 murine teratocarcinoma stem cells differentiate into nontumorigenic cells resembling the extraembryonic endoderm of the early mouse embryo. By differential hybridization screening of an F9 cell cDNA library, we isolated a 1,745-nucleotide cDNA for a gene, REX-1 (for reduced expression), whose steady-state mRNA level began to decline in F9 cells in monolayer culture within 12 h after the addition of RA. By 48 to 96 h after RA treatment of F9 cells in monolayer culture, the REX-1 steady-state mRNA level was more than sevenfold lower than the level in undifferentiated F9 stem cells. The REX-1 mRNA decrease did not result from the reduction in cell growth rate associated with the differentiation process, since the REX-1 mRNA level did not decline in F9 cells that were partially growth arrested after 48 h of isoleucine deprivation. The RA-associated REX-1 mRNA decrease resulted primarily from a reduction in the transcription rate of the REX-1 gene in the presence of RA. In contrast to results in F9 cells, we have been unable thus far to detect REX-1 mRNA in day 7.5 to 12.5 mouse embryo RNA samples or in the P19 teratocarcinoma stem cell line. The putative REX-1 protein identified by DNA sequence analysis contains four repeats of the zinc finger nucleic acid-binding motif and a potential acidic activator domain, suggesting that REX-1 encodes a regulatory protein. The REX-1 gene is not identical to the previously reported murine genes that encode zinc finger-containing proteins.


1989 ◽  
Vol 108 (6) ◽  
pp. 2467-2476 ◽  
Author(s):  
S J Braunhut ◽  
L J Gudas ◽  
T Kurokawa ◽  
J Sasse ◽  
P A D'Amore

F9 teratocarcinoma stem cells treated with retinoic acid (RA) and dibutyryl cAMP (but2 cAMP) differentiate into embryonic parietal endoderm. Using heparin-affinity chromatography, endothelial cell proliferation assays, immunoprecipitation, and Western analysis with antibodies specific for acidic and basic fibroblast growth factors (FGFs), we detected biologically active FGF in F9 cells only after differentiation. A bovine basic FGF cDNA probe hybridized to 2.2-kb mRNAs in both F9 stem and parietal endoderm cells and to a 3.8-kb mRNA in F9 stem cells. A genomic DNA probe for acidic FGF hybridized to a 5.8-6.0-kb mRNA in both F9 stem and parietal endoderm cells, and to a 6.0-6.3-kb mRNA only in parietal endoderm cells. Although these FGF mRNAs were present in the stem cells, we could find no evidence that F9 stem cells synthesized FGFs, whereas differentiated F9 cells synthesized both acidic and basic FGF-like proteins. We conclude that biologically active factors with properties characteristic of acidic and basic FGF are expressed by F9 parietal endoderm cells after differentiation. Differentiating embryonic parietal endoderm thus may serve as a source of FGF molecules in the developing blastocyst, where these factors appear to play a central role in subsequent embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document