scholarly journals The C-protein tetramer binds 230 to 240 nucleotides of pre-mRNA and nucleates the assembly of 40S heterogeneous nuclear ribonucleoprotein particles

1994 ◽  
Vol 14 (1) ◽  
pp. 518-533
Author(s):  
M Huang ◽  
J E Rech ◽  
S J Northington ◽  
P F Flicker ◽  
A Mayeda ◽  
...  

A series of in vitro protein-RNA binding studies using purified native (C1)3C2 and (A2)3B1 tetramers, total soluble heterogeneous nuclear ribonucleoprotein (hnRNP), and pre-mRNA molecules differing in length and sequence have revealed that a single C-protein tetramer has an RNA site size of 230 to 240 nucleotides (nt). Two tetramers bind twice this RNA length, and three tetramers fold monoparticle lengths of RNA (700 nt) into a unique 19S triangular complex. In the absence of this unique structure, the basic A- and B-group proteins bind RNA to form several different artifactual structures which are not present in preparations of native hnRNP and which do not function in hnRNP assembly. Three (A2)3B1 tetramers bind the 19S complex to form a 35S assembly intermediate. Following UV irradiation to immobilize the C proteins on the packaged RNA, the 19S triangular complex is recovered as a remnant structure from both native and reconstituted hnRNP particles. C protein-RNA complexes composed of three, six, or nine tetramers (one, two, or three triangular complexes) nucleate the stoichiometric assembly of monomer, dimer, and trimer hnRNP particles. The binding of C-protein tetramers to RNAs longer than 230 nt is through a self-cooperative combinatorial mode. RNA packaged in the 19S complex and in 40S hnRNP particles is efficiently spliced in vitro. These findings demonstrate that formation of the triangular C protein-RNA complex is an obligate first event in the in vitro and probably the in vivo assembly the 40S hnRNP core particle, and they provide insight into the mechanism through which the core proteins package 700-nt increments of RNA. These findings also demonstrate that unless excluded by other factors, the C proteins are likely to be located along the length of nascent transcripts.

1994 ◽  
Vol 14 (1) ◽  
pp. 518-533 ◽  
Author(s):  
M Huang ◽  
J E Rech ◽  
S J Northington ◽  
P F Flicker ◽  
A Mayeda ◽  
...  

A series of in vitro protein-RNA binding studies using purified native (C1)3C2 and (A2)3B1 tetramers, total soluble heterogeneous nuclear ribonucleoprotein (hnRNP), and pre-mRNA molecules differing in length and sequence have revealed that a single C-protein tetramer has an RNA site size of 230 to 240 nucleotides (nt). Two tetramers bind twice this RNA length, and three tetramers fold monoparticle lengths of RNA (700 nt) into a unique 19S triangular complex. In the absence of this unique structure, the basic A- and B-group proteins bind RNA to form several different artifactual structures which are not present in preparations of native hnRNP and which do not function in hnRNP assembly. Three (A2)3B1 tetramers bind the 19S complex to form a 35S assembly intermediate. Following UV irradiation to immobilize the C proteins on the packaged RNA, the 19S triangular complex is recovered as a remnant structure from both native and reconstituted hnRNP particles. C protein-RNA complexes composed of three, six, or nine tetramers (one, two, or three triangular complexes) nucleate the stoichiometric assembly of monomer, dimer, and trimer hnRNP particles. The binding of C-protein tetramers to RNAs longer than 230 nt is through a self-cooperative combinatorial mode. RNA packaged in the 19S complex and in 40S hnRNP particles is efficiently spliced in vitro. These findings demonstrate that formation of the triangular C protein-RNA complex is an obligate first event in the in vitro and probably the in vivo assembly the 40S hnRNP core particle, and they provide insight into the mechanism through which the core proteins package 700-nt increments of RNA. These findings also demonstrate that unless excluded by other factors, the C proteins are likely to be located along the length of nascent transcripts.


2006 ◽  
Vol 17 (8) ◽  
pp. 3521-3533 ◽  
Author(s):  
Linda D. Kosturko ◽  
Michael J. Maggipinto ◽  
George Korza ◽  
Joo Won Lee ◽  
John H. Carson ◽  
...  

Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a trans-acting RNA-binding protein that mediates trafficking of RNAs containing the cis-acting A2 response element (A2RE). Previous work has shown that A2RE RNAs are transported to myelin in oligodendrocytes and to dendrites in neurons. hnRNP E1 is an RNA-binding protein that regulates translation of specific mRNAs. Here, we show by yeast two-hybrid analysis, in vivo and in vitro coimmunoprecipitation, in vitro cross-linking, and fluorescence correlation spectroscopy that hnRNP E1 binds to hnRNP A2 and is recruited to A2RE RNA in an hnRNP A2-dependent manner. hnRNP E1 is colocalized with hnRNP A2 and A2RE mRNA in granules in dendrites of oligodendrocytes. Overexpression of hnRNP E1 or microinjection of exogenous hnRNP E1 in neural cells inhibits translation of A2RE mRNA, but not of non-A2RE RNA. Excess hnRNP E1 added to an in vitro translation system reduces translation efficiency of A2RE mRNA, but not of nonA2RE RNA, in an hnRNP A2-dependent manner. These results are consistent with a model where hnRNP E1 recruited to A2RE RNA granules by binding to hnRNP A2 inhibits translation of A2RE RNA during granule transport.


1999 ◽  
Vol 338 (2) ◽  
pp. 417-425 ◽  
Author(s):  
Mate TOLNAY ◽  
Lyudmila A. VERESHCHAGINA ◽  
George C. TSOKOS

Complement receptor 2 (CR2) is important in the regulation of the B lymphocyte response; the regulation of its expression is therefore of central importance. We recently reported that a 42 kDa heterogeneous nuclear ribonucleoprotein (hnRNP) is involved in the transcriptional regulation of the human CR2 gene [Tolnay, Lambris and Tsokos (1997) J. Immunol. 159, 5492–5501]. We cloned the cDNA encoding this protein and found it to be identical with hnRNP D0B, a sequence-specific RNA-binding protein. By using a set of mutated oligonucleotides, we demonstrated that the recombinant hnRNP D0B displays sequence specificity for double-stranded oligonucleotide defined by the CR2 promoter. We conducted electrophoretic mobility-shift assays to estimate the apparent Kd of hnRNP D0B for the double-stranded DNA motif and found it to be 59 nM. Interestingly, hnRNP D0B displayed affinities of 28 and 18 nM for the sense and anti-sense strands of the CR2 promoter-defined oligonucleotide respectively. The significantly greater binding affinity of hnRNP D0B for single-stranded DNA than for double-stranded DNA suggests that the protein might melt the double helix. The intranuclear concentration of sequence-specific protein was estimated to be 250–400 nM, indicating that the protein binds to the CR2 promoter in vivo. Co-precipitation of a complex formed in vivo between hnRNP D0B and the TATA-binding protein demonstrates that hnRNP D0B interacts with the basal transcription apparatus. Our results suggest a new physiological role for hnRNP D0B that involves binding to double- and single-stranded DNA sequences in a specific manner and functioning as a transcription factor.


1996 ◽  
Vol 16 (5) ◽  
pp. 2350-2360 ◽  
Author(s):  
E F Michelotti ◽  
G A Michelotti ◽  
A I Aronsohn ◽  
D Levens

The CT element is a positively acting homopyrimidine tract upstream of the c-myc gene to which the well-characterized transcription factor Spl and heterogeneous nuclear ribonucleoprotein (hnRNP) K, a less well-characterized protein associated with hnRNP complexes, have previously been shown to bind. The present work demonstrates that both of these molecules contribute to CT element-activated transcription in vitro. The pyrimidine-rich strand of the CT element both bound to hnRNP K and competitively inhibited transcription in vitro, suggesting a role for hnRNP K in activating transcription through this single-stranded sequence. Direct addition of recombinant hnRNP K to reaction mixtures programmed with templates bearing single-stranded CT elements increased specific RNA synthesis. If hnRNP K is a transcription factor, then interactions with the RNA polymerase II transcription apparatus are predicted. Affinity columns charged with recombinant hnRNP K specifically bind a component(s) necessary for transcription activation. The depleted factors were biochemically complemented by a crude TFIID phosphocellulose fraction, indicating that hnRNP K might interact with the TATA-binding protein (TBP)-TBP-associated factor complex. Coimmunoprecipitation of a complex formed in vivo between hnRNP K and epitope-tagged TBP as well as binding in vitro between recombinant proteins demonstrated a protein-protein interaction between TBP and hnRNP K. Furthermore, when the two proteins were overexpressed in vivo, transcription from a CT element-dependent reporter was synergistically activated. These data indicate that hnRNP K binds to a specific cis element, interacts with the RNA polymerase II transcription machinery, and stimulates transcription and thus has all of the properties of a transcription factor.


2021 ◽  
Author(s):  
Min Xu ◽  
Yu Chen ◽  
Hao-Yan Yuan ◽  
Yue-Hai Shen ◽  
Jia-Yao Xiang ◽  
...  

Abstract HBV infection is a major global health burden that needs novel immunotherapeutic approaches. Herein, we show that heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is a novel drug target for HBV infection. We reveal the new target with highly selective probes of PAC5, a natural sesquiterpene derivative. PAC5 show potent anti-HBV activity in vivo and in vitro. Further studies on its mode of action indicate that PAC5 binds to the residue Asp49 and a deep groove in the RNA recognition motif1 (RRM1) region of hnRNPA2B1. PAC5-bound hnRNPA2B1 is activated, dimerized, and translocated to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to the production of type I interferons (IFNs). Furthermore, PAC5 also suppresses other viral replications, such as SARS-CoV-2 and vesicular stomatitis virus (VSV). Our results indicate that PAC5 is the first small molecule agonist of hnRNPA2B1, a drug target potentially valid for broad-spectrum viral infections, providing a novel strategy for viral immunotherapy.


2000 ◽  
Vol 348 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Mate TOLNAY ◽  
Lajos BARANYI ◽  
George C. TSOKOS

Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) is an abundant, ubiquitous protein that binds RNA and DNA sequences specifically, and has been implicated in the transcriptional regulation of the human complement receptor 2 gene. We found that in vivo expression of hnRNP D0-GAL4 fusion proteins increased the transcriptional activity of a GAL4-driven reporter gene, providing direct proof that hnRNP D0 possesses a transactivator domain. We found, using truncated hnRNP D0 proteins fused to GAL4, that 29 amino acids in the N-terminal region are critical for transactivation. We established, using a series of recombinant truncated hnRNP D0 proteins, that the tandem RNA-binding domains alone were not able to bind double-stranded DNA. Nevertheless, 24 additional amino acids of the C-terminus imparted sequence-specific DNA binding. Experiments using peptide-specific antisera supported the importance of the 24-amino-acid region in DNA binding, and suggested the involvement of the 19-amino-acid alternative insert which is present in isoforms B and D. The N-terminus had an inhibitory effect on binding of hnRNP D0 to single-stranded, but not to double-stranded, DNA. Although both recombinant hnRNP D0B and D0D bound DNA, only the B isoform recognized DNA in vivo. We propose that the B isoform of hnRNP D0 functions in the nucleus as a DNA-binding transactivator and has distinct transactivator and DNA-binding domains.


1990 ◽  
Vol 10 (12) ◽  
pp. 6397-6407 ◽  
Author(s):  
J Wilusz ◽  
T Shenk

Every RNA added to an in vitro polyadenylation extract became stably associated with both the heterogeneous nuclear ribonucleoprotein (hnRNP) A and C proteins, as assayed by immunoprecipitation analysis using specific monoclonal antibodies. UV-cross-linking analysis, however, which assays the specific spatial relationship of certain amino acids and RNA bases, indicated that the hnRNP C proteins, but not the A proteins, were associated with downstream sequences of the simian virus 40 late polyadenylation signal in a sequence-mediated manner. A tract of five consecutive uridylate residues was required for this interaction. The insertion of a five-base U tract into a pGEM4 polylinker-derived transcript was sufficient to direct sequence-specific cross-linking of the C proteins to RNA. Finally, the five-base uridylate tract restored efficient in vitro processing to several independent poly(A) signals in which it substituted for downstream element sequences. The role of the downstream element in polyadenylation efficiency, therefore, may be mediated by sequence-directed alignment or phasing of an hnRNP complex.


Sign in / Sign up

Export Citation Format

Share Document