scholarly journals Multiple cis-acting targeting sequences are required for orb mRNA localization during Drosophila oogenesis.

1994 ◽  
Vol 14 (4) ◽  
pp. 2235-2242 ◽  
Author(s):  
V Lantz ◽  
P Schedl

The targeting of positional information to specific regions of the oocyte or early embryo is one of the key processes in establishing anterior-posterior and dorsal-ventral polarity. In many developmental systems, this is accomplished by localization of mRNAs. The germ line-specific Drosophila orb gene plays a critical role in defining both axes of the developing oocyte, and its mRNA is localized in a complex pattern during oogenesis. We have identified a 280-bp sequence from the orb 3' untranslated region capable of reproducing this complex localization pattern. Furthermore, we have found that multiple cis-acting elements appear to be required for proper targeting of orb mRNA.

1994 ◽  
Vol 14 (4) ◽  
pp. 2235-2242
Author(s):  
V Lantz ◽  
P Schedl

The targeting of positional information to specific regions of the oocyte or early embryo is one of the key processes in establishing anterior-posterior and dorsal-ventral polarity. In many developmental systems, this is accomplished by localization of mRNAs. The germ line-specific Drosophila orb gene plays a critical role in defining both axes of the developing oocyte, and its mRNA is localized in a complex pattern during oogenesis. We have identified a 280-bp sequence from the orb 3' untranslated region capable of reproducing this complex localization pattern. Furthermore, we have found that multiple cis-acting elements appear to be required for proper targeting of orb mRNA.


Development ◽  
1994 ◽  
Vol 120 (8) ◽  
pp. 2245-2257 ◽  
Author(s):  
S. Roth ◽  
T. Schupbach

In Drosophila, the dorsoventral asymmetry of the egg chamber depends on a dorsalizing signal that emanates from the oocyte. This signal is supplied by the TGF alpha-like gurken protein whose RNA is localized to the dorsal-anterior corner of the oocyte, gurken protein is the potential ligand of the Drosophila EGF receptor homolog (torpedo), which is expressed in the follicular epithelium surrounding the oocyte. Here, we describe how changes in the dorsalizing germ-line signal affect the embryonic dorsoventral pattern. A reduction in strength of the germ-line signal as produced by mutations in gurken or torpedo does not change the slope of the embryonic dorsoventral morphogen gradient, but causes a splitting of the gradient ventrally. This leads to embryos with two partial dorsoventral axes. A change in distribution of the germ-line signal as caused by fs(1)K10, squid and orb mutations leads to a shift in the orientation of the embryonic dorsoventral axis relative to the anterior-posterior axis. In extreme cases, this results in embryos with a dorsoventral axis almost parallel to the anterior-posterior axis. These results imply that gurken, unlike other localized cytoplasmic determinants, is not directly responsible for the establishment of cell fates along a body axis, but that it restricts and orients an active axis-forming process which occurs later in the follicular epithelium or in the early embryo.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1233-1243 ◽  
Author(s):  
P.M. Macdonald ◽  
K. Kerr ◽  
J.L. Smith ◽  
A. Leask

Deployment of the bicoid morphogen gradient in early Drosophila embryos requires the prelocalization of bicoid mRNA to the anterior pole of the egg. This anterior localization is mediated by a cis-acting localization signal contained within the 3′ untranslated region of the bicoid mRNA. Here we use a series of bicoid transgenes carrying small deletions in the 3′ untranslated region to survey for functional elements that constitute the localization signal. We identify and characterize one essential element, BLE1, which specifically directs the early steps of localization. In addition, we find that many deletions within the bicoid mRNA 3′ untranslated region impair but do not prevent localization. One such deletion specifically interferes with a later step in localization. Thus the bicoid mRNA localization signal appears to consist of multiple different elements, each responsible for different steps in the localization process.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2791-2800 ◽  
Author(s):  
E.R. Gavis ◽  
L. Lunsford ◽  
S.E. Bergsten ◽  
R. Lehmann

Correct formation of the Drosophila body plan requires restriction of nanos activity to the posterior of the embryo. Spatial regulation of nanos is achieved by a combination of RNA localization and localization-dependent translation such that only posteriorly localized nanos RNA is translated. Cis-acting sequences that mediate both RNA localization and translational regulation lie within the nanos 3′ untranslated region. We have identified a discrete translational control element within the nanos 3′ untranslated region that acts independently of the localization signal to mediate translational repression of unlocalized nanos RNA. Both the translational regulatory function of the nanos 3′UTR and the sequence of the translational control element are conserved between D. melanogaster and D. virilis. Furthermore, we show that the RNA helicase Vasa, which is required for nanos RNA localization, also plays a critical role in promoting nanos translation. Our results specifically exclude models for translational regulation of nanos that rely on changes in polyadenylation.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 169-178 ◽  
Author(s):  
J. Kim-Ha ◽  
P.J. Webster ◽  
J.L. Smith ◽  
P.M. Macdonald

Pattern formation in the early development of many organisms relies on localized cytoplasmic proteins, which can be prelocalized as mRNAs. The Drosophila oskar gene, required both for posterior body patterning and germ cell determination, encodes one such mRNA. Localization of oskar mRNA is an elaborate process involving movement of the transcript first into the oocyte from adjacent interconnected nurse cells and then across the length of the oocyte to its posterior pole. We have mapped RNA regulatory elements that direct this localization. Using a hybrid lacZ/oskar mRNA, we identify several elements within the oskar 3′ untranslated region that affect different steps in the process: the early movement into the oocyte, accumulation at the anterior margin of the oocyte and finally localization to the posterior pole. This use of multiple cis-acting elements suggests that localization may be orchestrated in a combinatorial fashion, thereby allowing localized mRNAs with ultimately different destinations to employ common mechanisms for shared intermediate steps.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1473
Author(s):  
Junxing Zhao ◽  
Jianming Qiu ◽  
Sadikshya Aryal ◽  
Jennifer L. Hackett ◽  
Jingxin Wang

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. The 3′ untranslated region (UTR) of this β-CoV contains essential cis-acting RNA elements for the viral genome transcription and replication. These elements include an equilibrium between an extended bulged stem-loop (BSL) and a pseudoknot. The existence of such an equilibrium is supported by reverse genetic studies and phylogenetic covariation analysis and is further proposed as a molecular switch essential for the control of the viral RNA polymerase binding. Here, we report the SARS-CoV-2 3′ UTR structures in cells that transcribe the viral UTRs harbored in a minigene plasmid and isolated infectious virions using a chemical probing technique, namely dimethyl sulfate (DMS)-mutational profiling with sequencing (MaPseq). Interestingly, the putative pseudoknotted conformation was not observed, indicating that its abundance in our systems is low in the absence of the viral nonstructural proteins (nsps). Similarly, our results also suggest that another functional cis-acting element, the three-helix junction, cannot stably form. The overall architectures of the viral 3′ UTRs in the infectious virions and the minigene-transfected cells are almost identical.


2004 ◽  
Vol 279 (50) ◽  
pp. 52613-52622 ◽  
Author(s):  
Ilham Aliagaevich Muslimov ◽  
Volker Nimmrich ◽  
Alejandro Ivan Hernandez ◽  
Andrew Tcherepanov ◽  
Todd Charlton Sacktor ◽  
...  

Protein kinase Mζ (PKMζ) is an atypical protein kinase C isoform that has been implicated in the protein synthesis-dependent maintenance of long term potentiation and memory storage in the brain. Synapse-associated kinases are uniquely positioned to promote enduring consolidation of structural and functional modifications at the synapse, provided that kinase mRNA is available on site for local input-specific translation. We now report that the mRNA encoding PKMζ is rapidly transported and specifically localized to synaptodendritic neuronal domains. Transport of PKMζ mRNA is specified by two cis-acting dendritic targeting elements (Mζ DTEs). Mζ DTE1, located at the interface of the 5′-untranslated region and the open reading frame, directs somato-dendritic export of the mRNA. Mζ DTE2, in contrast, is located in the 3′-untranslated region and is required for delivery of the mRNA to distal dendritic segments. Colocalization with translational repressor BC1 RNA in hippocampal dendrites suggests that PKMζ mRNA may be subject to translational control in local domains. Dendritic localization of PKMζ mRNA provides a molecular basis for the functional integration of synaptic signal transduction and translational control pathways.


2021 ◽  
Author(s):  
Bing Sun ◽  
McLean Sherrin ◽  
Richard Roy

Abstract During periods of starvation organisms must modify both gene expression and metabolic pathways to adjust to the energy stress. We previously reported that C. elegans that lack AMPK have transgenerational reproductive defects that result from abnormally elevated H3K4me3 levels in the germ line following recovery from acute starvation1. Here we show that H3K4me3 is dramatically increased at promoters, driving aberrant transcription elongation that results in the accumulation of R-loops in the starved AMPK mutants. DRIP-seq analysis demonstrated that a significant proportion of the genome was affected by R-loop formation with a dramatic expansion in the number of R-loops at numerous loci, most pronounced at the promoter-TSS regions of genes in the starved AMPK mutants. The R-loops are transmissible into subsequent generations, likely contributing to the transgenerational reproductive defects typical of these mutants following starvation. Strikingly, AMPK null germ lines show considerably more RAD-51 foci at sites of R-loop formation, potentially sequestering it from its critical role at meiotic breaks and/or at sites of induced DNA damage. Our study reveals a previously unforeseen role of AMPK in maintaining genome stability following starvation, where in its absence R-loops accumulate, resulting in reproductive compromise and DNA damage hypersensitivity.


1992 ◽  
Vol 12 (10) ◽  
pp. 4796-4805
Author(s):  
A C Prats ◽  
S Vagner ◽  
H Prats ◽  
F Amalric

Four forms of basic fibroblast growth factor (bFGF) are synthesized from the same mRNA, resulting from alternative initiations of translation at three CUG start codons and one AUG start codon. The CUG- and AUG-initiated forms have distinct intracellular localizations and can modify cell phenotypes differently, indicating that control of the alternative expression of the different forms of bFGF has an important impact on the cell. In this study, we investigated the roles of the mRNA 5' untranslated region and the alternatively translated region located between the CUG and AUG codons in the regulation of alternative translation of the different forms of bFGF. Deletions and site-directed mutagenesis were carried out in bFGF mRNA leader, and translation was studied in vitro and in vivo. The results enabled us to identify five cis-acting RNA elements (two in the 5' untranslated region and three in the alternatively translated region) involved in the regulation of either global or alternative initiation of translation. Each of these elements had a specific effect on the level of synthesis of the different forms of bFGF. Furthermore, we showed that the 5' untranslated region regulatory elements had different effects on bFGF translation, depending on the translation system used. These results suggest that bFGF translation is modulated by cis-acting elements corresponding to secondary or tertiary RNA structures, which could be the targets of cell-specific trans-acting factors.


Sign in / Sign up

Export Citation Format

Share Document