The relationship between ovarian and embryonic dorsoventral patterning in Drosophila

Development ◽  
1994 ◽  
Vol 120 (8) ◽  
pp. 2245-2257 ◽  
Author(s):  
S. Roth ◽  
T. Schupbach

In Drosophila, the dorsoventral asymmetry of the egg chamber depends on a dorsalizing signal that emanates from the oocyte. This signal is supplied by the TGF alpha-like gurken protein whose RNA is localized to the dorsal-anterior corner of the oocyte, gurken protein is the potential ligand of the Drosophila EGF receptor homolog (torpedo), which is expressed in the follicular epithelium surrounding the oocyte. Here, we describe how changes in the dorsalizing germ-line signal affect the embryonic dorsoventral pattern. A reduction in strength of the germ-line signal as produced by mutations in gurken or torpedo does not change the slope of the embryonic dorsoventral morphogen gradient, but causes a splitting of the gradient ventrally. This leads to embryos with two partial dorsoventral axes. A change in distribution of the germ-line signal as caused by fs(1)K10, squid and orb mutations leads to a shift in the orientation of the embryonic dorsoventral axis relative to the anterior-posterior axis. In extreme cases, this results in embryos with a dorsoventral axis almost parallel to the anterior-posterior axis. These results imply that gurken, unlike other localized cytoplasmic determinants, is not directly responsible for the establishment of cell fates along a body axis, but that it restricts and orients an active axis-forming process which occurs later in the follicular epithelium or in the early embryo.

Development ◽  
1997 ◽  
Vol 124 (19) ◽  
pp. 3871-3880 ◽  
Author(s):  
A.M. Queenan ◽  
A. Ghabrial ◽  
T. Schupbach

The Drosophila gene torpedo/Egfr (top/Egfr) encodes a homolog of the vertebrate Epidermal Growth Factor receptor. This receptor is required several times during the life cycle of the fly for the transmisson of developmental cues. During oogenesis, Top/Egfr activation is required for the establishment of the dorsal/ventral axis of the egg and the embryo. To examine how ectopic Top/Egfr activation affects cell fate determination, we constructed an activated version of the protein. Expression of this activated form (lambda top) in the follicle cells of the ovary induces dorsal cell fates in both the follicular epithelium and the embryo. Different levels of expression resulted in different dorsal follicle cell fates. These dorsal cell fates were expanded in the anterior, but not the posterior, of the egg, even in cases where all the follicle cells covering the oocyte expressed lambda top. The expression of genes known to respond to top/Egfr activation, argos (aos), kekkon1 (kek 1) and rhomboid (rho), was also expanded in the presence of the lambda top construct. When lambda top was expressed in all the follicle cells covering the oocyte, kek 1 and argos expression was induced in follicle cells all along the anterior/posterior axis of the egg chamber. In contrast, rho RNA expression was only activated in the anterior of the egg chamber. These data indicate that the response to Top/Egfr signaling is regulated by an anterior/posterior prepattern in the follicle cells. Expression of lambda top in the entire follicular epithelium resulted in an embryo dorsalized along the entire anterior/posterior axis. Expression of lambda top in anterior or posterior subpopulations of follicle cells resulted in regionally autonomous dorsalization of the embryos. This result indicates that subpopulations of follicle cells along the anterior/posterior axis can respond to Top/Egfr activation independently of one another.


Development ◽  
1998 ◽  
Vol 125 (2) ◽  
pp. 191-200 ◽  
Author(s):  
A. Sapir ◽  
R. Schweitzer ◽  
B.Z. Shilo

Previous work has demonstrated a role for the Drosophila EGF receptor (Torpedo/DER) and its ligand, Gurken, in the determination of anterioposterior and dorsoventral axes of the follicle cells and oocyte. The roles of DER in establishing the polarity of the follicle cells were examined further, by following the expression of DER-target genes. One class of genes (e.g. kekon) is induced by the DER pathway at all stages. Broad expression of kekon at the stage in which the follicle cells migrate posteriorly over the oocyte, demonstrates the capacity of the pathway to pattern all follicle cells except the ventral-most rows. This may provide the spatial coordinates for the ventral-most follicle cell fates. A second group of target genes (e.g. rhomboid (rho)) is induced only at later stages of oogenesis, and may require additional inputs by signals emanating from the anterior, stretch follicle cells. The function of Rho was analyzed by ectopic expression in the stretch follicle cells, and shown to induce a non-autonomous dorsalizing activity that is independent of Gurken. Rho thus appears to be involved in processing a DER ligand in the follicle cells, to pattern the egg chamber and allow persistent activation of the DER pathway during formation of the dorsal appendages.


Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2837-2846 ◽  
Author(s):  
A. Gonzalez-Reyes ◽  
D. St Johnston

Gurken signals from the oocyte to the adjacent follicle cells twice during Drosophila oogenesis; first to induce posterior fate, thereby polarising the anterior-posterior axis of the future embryo and then to induce dorsal fate and polarise the dorsal-ventral axis. Here we show that Gurken induces two different follicle cell fates because the follicle cells at the termini of the egg chamber differ in their competence to respond to Gurken from the main-body follicle cells in between. By removing the putative Gurken receptor, Egfr, in clones of cells, we show that Gurken signals directly to induce posterior fate in about 200 cells, defining a terminal competence domain that extends 10–11 cell diameters from the pole. Furthermore, small clones of Egfr mutant cells at the posterior interpret their position with respect to the pole and differentiate as the appropriate anterior cell type. Thus, the two terminal follicle cell populations contain a symmetric prepattern that is independent of Gurken signalling. These results suggest a three-step model for the anterior-posterior patterning of the follicular epithelium that subdivides this axis into at least five distinct cell types. Finally, we show that Notch plays a role in both the specification and patterning of the terminal follicle cells, providing a possible explanation for the defect in anterior-posterior axis formation caused by Notch and Delta mutants.


2021 ◽  
Author(s):  
Helene Doerflinger ◽  
Vitaly Zimyanin ◽  
Daniel St Johnston

The Drosophila anterior-posterior (AP) axis is specified at mid-oogenesis when Par-1 kinase is recruited to the posterior cortex of the oocyte, where it polarises the microtubule cytoskeleton to define where the axis determinants, bicoid and oskar mRNAs localise. This polarity is established in response to an unknown signal from the follicle cells, but how this occurs is unclear. Here we show that the myosin chaperone, Unc-45 and Non-Muscle Myosin II (MyoII) are required in the germ line upstream of Par-1 in polarity establishment. Furthermore, the Myosin regulatory Light Chain (MRLC) is di-phosphorylated at the oocyte posterior in response to the follicle cell signal, inducing longer pulses of myosin contractility at the posterior and increased cortical tension. Over-expression of MRLC-T21A that cannot be di-phosphorylated or acute treatment with the Myosin light chain kinase inhibitor ML-7 abolish Par-1 localisation, indicating that posterior of MRLC di-phosphorylation is essential for polarity. Thus, asymmetric myosin activation polarizes the anterior-posterior axis by recruiting and maintaining Par-1 at the posterior cortex. This raises an intriguing parallel with AP axis formation in C. elegans where MyoII is also required to establish polarity, but functions to localize the anterior PAR proteins rather than PAR-1.


Author(s):  
Brittany Cain ◽  
Brian Gebelein

Metazoans differentially express multiple Hox transcription factors to specify diverse cell fates along the developing anterior-posterior axis. Two challenges arise when trying to understand how the Hox transcription factors regulate the required target genes for morphogenesis: First, how does each Hox factor differ from one another to accurately activate and repress target genes required for the formation of distinct segment and regional identities? Second, how can a Hox factor that is broadly expressed in many tissues within a segment impact the development of specific organs by regulating target genes in a cell type-specific manner? In this review, we highlight how recent genomic, interactome, and cis-regulatory studies are providing new insights into answering these two questions. Collectively, these studies suggest that Hox factors may differentially modify the chromatin of gene targets as well as utilize numerous interactions with additional co-activators, co-repressors, and sequence-specific transcription factors to achieve accurate segment and cell type-specific transcriptional outcomes.


1994 ◽  
Vol 14 (4) ◽  
pp. 2235-2242
Author(s):  
V Lantz ◽  
P Schedl

The targeting of positional information to specific regions of the oocyte or early embryo is one of the key processes in establishing anterior-posterior and dorsal-ventral polarity. In many developmental systems, this is accomplished by localization of mRNAs. The germ line-specific Drosophila orb gene plays a critical role in defining both axes of the developing oocyte, and its mRNA is localized in a complex pattern during oogenesis. We have identified a 280-bp sequence from the orb 3' untranslated region capable of reproducing this complex localization pattern. Furthermore, we have found that multiple cis-acting elements appear to be required for proper targeting of orb mRNA.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3639-3650 ◽  
Author(s):  
M.K. Larkin ◽  
K. Holder ◽  
C. Yost ◽  
E. Giniger ◽  
H. Ruohola-Baker

During early development, there are numerous instances where a bipotent progenitor divides to give rise to two progeny cells with different fates. The Notch gene of Drosophila and its homologues in other metazoans have been implicated in many of these cell fate decisions. It has been argued that the role of Notch in such instances may be to maintain cells in a precursor state susceptible to specific differentiating signals. This has been difficult to prove, however, due to a lack of definitive markers for precursor identity. We here perform molecular and morphological analyses of the roles of Notch in ovarian follicle cells during Drosophila oogenesis. These studies show directly that constitutively active Notch arrests cells at a precursor stage, while the loss of Notch function eliminates this stage. Expression of moderate levels of activated Notch leads to partial transformation of cell fates, as found in other systems, and we show that this milder phenotype correlates with a prolonged, but still transient, precursor stage. We also find that expression of constitutively active Notch in follicle cells at later stages leads to a defect in the anterior-posterior axis of the oocyte.


Development ◽  
2000 ◽  
Vol 127 (4) ◽  
pp. 841-850 ◽  
Author(s):  
F. Peri ◽  
S. Roth

During Drosophila oogenesis Gurken, associated with the oocyte nucleus, activates the Drosophila EGF receptor in the follicular epithelium. Gurken first specifies posterior follicle cells, which in turn signal back to the oocyte to induce the migration of the oocyte nucleus from a posterior to an anterior-dorsal position. Here, Gurken signals again to specify dorsal follicle cells, which give rise to dorsal chorion structures including the dorsal appendages. If Gurken signaling is delayed and starts after stage 6 of oogenesis the nucleus remains at the posterior pole of the oocyte. Eggs develop with a posterior ring of dorsal appendage material that is produced by main-body follicle cells expressing the gene Broad-Complex. They encircle terminal follicle cells expressing variable amounts of the TGFbeta homologue, decapentaplegic. By ectopically expressing decapentaplegic and clonal analysis with Mothers against dpp we show that Decapentaplegic signaling is required for Broad-Complex expression. Thus, the specification and positioning of dorsal appendages along the anterior-posterior axis depends on the intersection of both Gurken and Decapentaplegic signaling. This intersection also induces rhomboid expression and thereby initiates the positive feedback loop of EGF receptor activation, which positions the dorsal appendages along the dorsal-ventral egg axis.


Sign in / Sign up

Export Citation Format

Share Document