scholarly journals Spindle pole body separation in Saccharomyces cerevisiae requires dephosphorylation of the tyrosine 19 residue of Cdc28.

1996 ◽  
Vol 16 (11) ◽  
pp. 6385-6397 ◽  
Author(s):  
H H Lim ◽  
P Y Goh ◽  
U Surana

In eukaryotes, mitosis requires the activation of cdc2 kinase via association with cyclin B and dephosphorylation of the threonine 14 and tyrosine 15 residues. It is known that in the budding yeast Saccharomyces cerevisiae, a homologous kinase, Cdc28, mediates the progression through M phase, but it is not clear what specific mitotic function its activation by the dephosphorylation of an equivalent tyrosine (Tyr-19) serves. We report here that cells expressing cdc28-E19 (in which Tyr-19 is replaced by glutamic acid) perform Start-related functions, complete DNA synthesis, and exhibit high levels of Clb2-associated kinase activity but are unable to form bipolar spindles. The failure of these cells to form mitotic spindles is due to their inability to segregate duplicated spindle pole bodies (SPBs), a phenotype strikingly similar to that exhibited by a previously reported mutant defective in both kinesin-like motor proteins Cin8 and Kip1. We also find that the overexpression of SWE1, the budding-yeast homolog of wee1, also leads to a failure to segregate SPBs. These results imply that dephosphorylation of Tyr-19 is required for the segregation of SPBs. The requirement of Tyr-19 dephosphorylation for spindle assembly is also observed under conditions in which spindle formation is independent of mitosis, suggesting that the involvement of Cdc28/Clb kinase in SPB separation is direct. On the basis of these results, we propose that one of the roles of Tyr-19 dephosphorylation is to promote SPB separation.

1982 ◽  
Vol 94 (2) ◽  
pp. 341-349 ◽  
Author(s):  
S M King ◽  
J S Hyams ◽  
A Luba

Mitotic spindles were isolated from a cell division cycle mutant of the budding yeast Saccharomyces cerevisiae by the lysis of sphateroplasts on an air:buffer interface and were negatively stained with 1% gold thioglucose. Isolated spindles were incubated under conditions which promoted the sliding disintegration of parallel preparations of Tetrahymena axonemes, namely the addition of ATP to 20 microM. In no experiment was a corresponding change in microtubule organization of the spindle observed even when spindles were first pretreated with either 1-10 microgram/ml trypsin or 0.2-2% Triton X-100. During these experiments a number of spindles were isolated from cells that had passed through the imposed temperature block, and from the images obtained a detailed model of spindle formation and elongation has been constructed. Two sets of microtubules, one from each spindle pole body (SPB), completely interdigitate to form a continuous bundle, and a series of discontinuous microtubules are then nucleated by each SPB. As the spindle elongates, the number of microtubules continuous between the two SPBs decreases until, at a length of 4 micrometer, only one remains. The spindle, composed of only one microtubule, continues to elongate until it reaches the maximal nuclear dimension of 8 micrometer. The data obtained from negatively stained preparations have been verified in thin sections of wild-type cells. We suggest that, as in the later stages of mitosis only one microtubule is involved in the separation of the spindle poles, the microtubular spindle in S. cerevisiae is not a force-generating system but rather acts as a regulatory mechanism controlling the rate of separation.


1999 ◽  
Vol 146 (5) ◽  
pp. 1019-1032 ◽  
Author(s):  
Chandra L. Theesfeld ◽  
Javier E. Irazoqui ◽  
Kerry Bloom ◽  
Daniel J. Lew

In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that maintenance of correct spindle orientation does not depend on F-actin during G2/M phase of the cell cycle. Depolymerization of F-actin using Latrunculin-A did not perturb spindle orientation after this stage. Even an early step in spindle orientation, the migration of the spindle pole body (SPB), became actin-independent if it was delayed until late in the cell cycle. Early in the cell cycle, both SPB migration and spindle orientation were very sensitive to perturbation of F-actin. Selective disruption of actin cables using a conditional tropomyosin double-mutant also led to de- fects in spindle orientation, even though cortical actin patches were still polarized. This suggests that actin cables are important for either guiding astral microtubules into the bud or anchoring them in the bud. In addition, F-actin was required early in the cell cycle for the development of the actin-independent spindle orientation capability later in the cell cycle. Finally, neither SPB migration nor the switch from actin-dependent to actin-independent spindle behavior required B-type cyclins.


1993 ◽  
Vol 13 (6) ◽  
pp. 3744-3755 ◽  
Author(s):  
C S Stueland ◽  
D J Lew ◽  
M J Cismowski ◽  
S I Reed

In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation.


1999 ◽  
Vol 145 (5) ◽  
pp. 979-991 ◽  
Author(s):  
Roberta Fraschini ◽  
Elisa Formenti ◽  
Giovanna Lucchini ◽  
Simonetta Piatti

The mitotic checkpoint blocks cell cycle progression before anaphase in case of mistakes in the alignment of chromosomes on the mitotic spindle. In budding yeast, the Mad1, 2, 3, and Bub1, 2, 3 proteins mediate this arrest. Vertebrate homologues of Mad1, 2, 3, and Bub1, 3 bind to unattached kinetochores and prevent progression through mitosis by inhibiting Cdc20/APC-mediated proteolysis of anaphase inhibitors, like Pds1 and B-type cyclins. We investigated the role of Bub2 in budding yeast mitotic checkpoint. The following observations indicate that Bub2 and Mad1, 2 probably activate the checkpoint via different pathways: (a) unlike the other Mad and Bub proteins, Bub2 localizes at the spindle pole body (SPB) throughout the cell cycle; (b) the effect of concomitant lack of Mad1 or Mad2 and Bub2 is additive, since nocodazole-treated mad1 bub2 and mad2 bub2 double mutants rereplicate DNA more rapidly and efficiently than either single mutant; (c) cell cycle progression of bub2 cells in the presence of nocodazole requires the Cdc26 APC subunit, which, conversely, is not required for mad2 cells in the same conditions. Altogether, our data suggest that activation of the mitotic checkpoint blocks progression through mitosis by independent and partially redundant mechanisms.


2004 ◽  
Vol 15 (4) ◽  
pp. 1519-1532 ◽  
Author(s):  
Jeffrey N. Molk ◽  
Scott C. Schuyler ◽  
Jenny Y. Liu ◽  
James G. Evans ◽  
E. D. Salmon ◽  
...  

In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade.


2001 ◽  
Vol 183 (7) ◽  
pp. 2372-2375 ◽  
Author(s):  
Andreas Wesp ◽  
Susanne Prinz ◽  
Gerald R. Fink

ABSTRACT During sporulation in diploid Saccharomyces cerevisiae, spindle pole bodies acquire the so-called meiotic plaque, a prerequisite for spore formation. Mpc70p is a component of the meiotic plaque and is thus essential for spore formation. We show here that MPC70/mpc70 heterozygous strains most often produce two spores instead of four and that these spores are always nonsisters. In wild-type strains, Mpc70p localizes to all four spindle pole bodies, whereas in MPC70/mpc70 strains Mpc70p localizes to only two of the four spindle pole bodies, and these are always nonsisters. Our data can be explained by conservative spindle pole body distribution in which the two newly synthesized meiosis II spindle pole bodies of MPC70/mpc70 strains lack Mpc70p.


2018 ◽  
Author(s):  
J Whalen ◽  
C Sniffen ◽  
S Gartland ◽  
M Vannini ◽  
A Seshan

ABSTRACTThe proper regulation of cell cycle transitions is paramount to the maintenance of cellular genome integrity. In budding yeast, the mitotic exit network (MEN) is a Ras-like signaling cascade that effects the transition from M phase to G1 during the cell division cycle in budding yeast. MEN activation is tightly regulated. It occurs during anaphase and is coupled to mitotic spindle position by the spindle position checkpoint (SPoC). Bfa1 is a key component of the SPoC and functions as part of a two-component GAP complex along with Bub2. The GAP activity of Bfa1-Bub2 keeps the MEN GTPase Tem1 inactive in cells with mispositioned spindles, thereby preventing inappropriate mitotic exit and preserving genome integrity. Interestingly, a GAP-independent role for Bfa1 in mitotic exit regulation has been previously identified. However the nature of this Bub2-independent role and its biological significance are not understood. Here we show that Bfa1 also activates the MEN by promoting the localization of Tem1 primarily to the daughter spindle pole body (dSPB). We demonstrate that the overexpression of BFA1 is lethal due to defects in Tem1 localization, which is required for its activity. In addition, our studies demonstrate a Tem1-independent role for Bfa1 in promoting proper cytokinesis. Cells lacking TEM1, in which the essential mitotic exit function is bypassed, exhibit cytokinesis defects. These defects are suppressed by the overexpression of BFA1. We conclude that Bfa1 functions to both inhibit and activate late mitotic events.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 647-659
Author(s):  
Kochung Tsui ◽  
Lee Simon ◽  
David Norris

The yeast Saccharomyces cerevisiae contains two genes for histone H2A and two for histone H2B located in two divergently transcribed gene pairs: HTA1-HTB1 and HTA2-HTB2. Diploid strains lacking HTA1-HTB1 (hta1-htb1Δ/hta1-htb1Δ, HTA2-HTB2/HTA2-HTB2) grow vegetatively, but will not sporulate. This sporulation phenotype results from a partial depletion of H2A-H2B dimers. Since the expression patterns of HTA1-HTB1 and HTA2-HTB2 are similar in mitosis and meiosis, the sporulation pathway is therefore more sensitive than the mitotic cycle to depletion of H2A-H2B dimers. After completing premeiotic DNA replication, commitment to meiotic recombination, and chiasma resolution, the hta1-htb1Δ/hta1-htb1Δ, HTA2-HTB2/HTA2-HTB2 mutant arrests before the first meiotic division. The arrest is not due to any obvious disruptions in spindle pole bodies or microtubules. The meiotic block is not bypassed in backgrounds homozygous for spo13, rad50Δ, or rad9Δ mutations, but is bypassed in the presence of hydroxyurea, a drug known to inhibit DNA chain elongation. We hypothesize that the deposition of H2A-H2B dimers in the mutant is unable to keep pace with the replication fork, thereby leading to a disruption in chromosome structure that interferes with the meiotic divisions.


1977 ◽  
Vol 24 (1) ◽  
pp. 81-93
Author(s):  
C.N. Gordon

Chromatin behaviour during the cell division cycle of the yeast Saccharomyces cerevisiae has been investigated in cells which have been depleted of 90% of their RNA by digestion with ribonuclease. Removal of large amounts of RNA from the yeast nucleus before treatment of the cells with heavy metal fixatives and stains permits chromatin to be visualized with extreme clarity in thin sections of cells processed for electron microscopy by conventional procedures. Spindle pole bodies were also visualized by this treatment, although the associated microtubules were not. Chromatin is dispersed during interphase and occupies the non-nucleolar region of the nucleus which is known to be Feulgen-positive from light microscopy. Because spindle microtubules are not visualized, direct attachment of microtubules to chromatin fibrils could not be verified. However, chromatin was not attached directly to the spindle pole bodies and kinetochore differentiations were not observed in the nucleoplasm. During nuclear division chromatin remains dispersed and does not condense into discrete chromatids. As the nucleus expands into the bud, chromosomal distribution to the daughter cells is thought to result from the separation of the poles of the spindle apparatus with attached chromatin fibrils. However, that such distribution is occurring as the nucleus elongates is not obvious until an advanced stage of nuclear division is reached and partition of the nucleus is nearly complete. Thus, no aggregation of chromatin into metaphase or anaphase plates occurs and the appearance of chromatin during mitosis is essentially the same as in interphase. These observations indicate that the marked changes in the topological structure of chromatin which characterize mitosis in the higher eukaryotes do not occur in S. cerevisiae.


1978 ◽  
Vol 30 (1) ◽  
pp. 331-352 ◽  
Author(s):  
B. Byers ◽  
K. Shriver ◽  
L. Goetsch

The spindle poles of the budding yeast, Saccharomyces cerevisiae, have been removed from mitotic and meiotic cells by osmotic lysis of spheroplasts. The spindle pole bodies (SPBs)—diskoidal structures also termed ‘spindle plaques’—have been analysed for their ability to potentiate the polymerization of microtubules in vitro. Free SPBs were completely deprived of any detectable native microtubules by incubation in the absence of added tubulin and were then challenged with chick neurotubulin, which had been rendered partially defective in self-initiation of repolymerization. Electron microscopy revealed that these SPBs served as foci for the initiation of microtubule polymerization in vitro. Because the attached microtubules elongated linearly with time but did not increase in numbers after the first stage of the reaction, it is apparent that there are a limited number of sites for initiation. The initiating potential of the SPBs was found to be inhibited by enzymic hydrolysis of protein but not of DNA. The microtubule end proximal to the site of initiation on the SPB is distinguished by a ‘closed’ appearance because of a terminal component which is continuous with the microtubule wall, whereas the distal end has the ‘open’ appearance characteristic of freely repolymerized neurotubules. SPBs which were partially purified on sucrose gradients retained their ability to initiate the assembly of microtubules with the same structural differentiation of their ends. The occurrence of closed proximal ends on native yeast microtubules suggests that closed ends may play a role in the initiation of microtubule polymerization in vivo, as well as in vitro.


Sign in / Sign up

Export Citation Format

Share Document