scholarly journals TFIIH functions in regulating transcriptional elongation by RNA polymerase II in Xenopus oocytes.

1996 ◽  
Vol 16 (7) ◽  
pp. 3291-3299 ◽  
Author(s):  
K Y Yankulov ◽  
M Pandes ◽  
S McCracken ◽  
D Bouchard ◽  
D L Bentley

We investigated the role of TFIIH in transcription by RNA polymerase II (pol II) in vivo by microinjection of antibodies against this factor into Xenopus oocytes. Five different antibodies directed against four subunits of TFIIH were tested for effects on transcription of coinjected human immunodeficiency virus type 2 and c-myc templates. Each of these antibodies severely reduced the efficiency of elongation through human immunodeficiency virus type 2 and c-myc terminator elements. In contrast, an anti-TFIIB antibody did not inhibit elongation. Anti-TFIIH antibodies also had a much smaller inhibitory effect on total transcription than did anti-TFIIB or anti-pol II large subunit. Three inhibitors of TFIIH kinase activity, H-7, H-8, and dichlororibofuranosylbenzimidazole (DRB), inhibited elongation similarly to anti-TFIIH antibodies. These results strongly suggest a role for TFIIH in the stimulation of transcriptional elongation in vivo.

2007 ◽  
Vol 81 (10) ◽  
pp. 5325-5330 ◽  
Author(s):  
Adam MacNeil ◽  
Abdoulaye Dieng Sarr ◽  
Jean-Louis Sankalé ◽  
Seema Thakore Meloni ◽  
Souleymane Mboup ◽  
...  

ABSTRACT Studies have shown that human immunodeficiency virus type 2 (HIV-2) is less pathogenic than HIV-1, with a lower rate of disease progression. Similarly, plasma viral loads are lower in HIV-2 infection, suggesting that HIV-2 replication is restricted in vivo in comparison to that of HIV-1. However, to date, in vivo studies characterizing replication intermediates in the viral life cycle of HIV-2 have been limited. In order to test the hypothesis that HIV-2 has a lower replication rate in vivo than HIV-1 does, we quantified total viral DNA, integrated proviral DNA, cell-associated viral mRNA, and plasma viral loads in peripheral blood samples from groups of therapy-naïve HIV-1-infected (n = 21) and HIV-2-infected (n = 18) individuals from Dakar, Senegal, with CD4+ T-cell counts of >200/μl. Consistent with our previous findings, total viral DNA loads were similar between HIV-1 and HIV-2 and plasma viral loads were higher among HIV-1-infected individuals. Proportions of DNA in the integrated form were also similar between these viruses. In contrast, levels of viral mRNA were lower in HIV-2 infection. Our study indicates that HIV-2 is able to establish a stable, integrated proviral infection in vivo, but that accumulation of viral mRNA is attenuated in HIV-2 infection relative to that in HIV-1 infection. The differences in viral mRNA are consistent with the differences in plasma viral loads between HIV-1 and HIV-2 and suggest that lower plasma viral loads, and possibly the attenuated pathogenesis of HIV-2, can be explained by lower rates of viral replication in vivo.


2002 ◽  
Vol 24 (3) ◽  
pp. 196-201 ◽  
Author(s):  
Lingyun Cheng ◽  
Sunan Chaidhawangul ◽  
Flossie Wong-Staal ◽  
James Gilbert ◽  
Eric Poeschla ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 254-254
Author(s):  
Xiaoying Bai ◽  
Joseph Lee ◽  
Jocelyn LeBlanc ◽  
Anna Sessa ◽  
Zhongan Yang ◽  
...  

Abstract Abstract 254 Vertebrate erythropoiesis is regulated by cell-specific transcription factors, RNA polymerase-associated basal machinery and chromatin remodeling factors. One critical chromatin factor is the transcriptional intermediary factor TIF1γ. Loss of TIF1γfunction in zebrafish mutant moonshine causes a profound anemia during embryogenesis, associated with a progressive decrease in expression of most erythroid mRNAs such as GATA1 and globin. TIF1γdeficiency has also been linked to TGF-βsignaling, although the in vivo mechanism for the anemia remains unclear. In an effort to find genes that interact with TIF1γ, we undertook a genetic suppressor screen in which we sought mutations in another gene that would restore blood to normal levels in the background of moonshine deficiency. Few suppressor screens have been done in vertebrate genetic models, and the haploid genetics of zebrafish was a great advantage for this screen. After screening 800 families of fish, two suppressor mutants, “eclipse” and “sunrise”, were found that could greatly rescue the erythroid defects in moonshine. The deficient gene in sunrise has been mapped to the locus of cdc73 (also known as parafibromin/HRPT2), a subunit of the PAF1 complex known to regulate RNA polymerase II (Pol II) elongation and chromatin modification. Furthermore, we have found that knocking down other subunits in the PAF1 complex also rescued the blood defect in moonshine, suggesting that PAF1 as a complex antagonizes TIF1γfunction during erythropoiesis. In yeast, PAF1 has been shown to physically or genetically interact with other elongation factors including DSIF, FACT and p-TEFb. We have found that knocking down DSIF, which is known to induce Pol II pausing during early elongation, also rescues moonshine. FACT and p-TEFb are both known to counteract DSIF to release Pol II from pausing, and knocking down FACT and p-TEFb caused the zebrafish to develop anemia. This strongly suggests that the erythroid defects in TIF1γdeficiency is caused by attenuated Pol II elongation. In an effort to understand the cell-specific phenotype of TIF1γdeficiency, we introduced a FLAG tagged TIF1γinto K562 erythroleukemia cells to pull down interacting proteins. Physical interactions were found among TIF1γ, FACT, p-TEFb and surprisingly the SCL hematopoietic transcription complex. The interaction with the SCL complex provides a cell-specific control over transcriptional elongation. The physical interactions, taken together with the genetic data, suggest a novel mechanism regulating erythropoiesis. TIF1γphysically and functionally links blood-specific transcription factors like SCL to Pol II-associated elongation machinery to regulate blood cell fate. In light of the recent discoveries of widespread Pol II stalling in the promoter proximal region in metazoan genomes, we speculate that similar mechanisms will regulate cell fates in other blood lineages as well as non-blood tissues. Disclosures: Zon: FATE Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Stemgent: Consultancy.


2008 ◽  
Vol 83 (2) ◽  
pp. 802-810 ◽  
Author(s):  
Tayyba T. Baig ◽  
Jean-Marc Lanchy ◽  
J. Stephen Lodmell

ABSTRACT The packaging signal (ψ) of human immunodeficiency virus type 2 (HIV-2) is present in the 5′ noncoding region of RNA and contains a 10-nucleotide palindrome (pal; 5′-392-GGAGUGCUCC) located upstream of the dimerization signal stem-loop 1 (SL1). pal has been shown to be functionally important in vitro and in vivo. We previously showed that the 3′ side of pal (GCUCC-3′) is involved in base-pairing interactions with a sequence downstream of SL1 to make an extended SL1, which is important for replication in vivo and the regulation of dimerization in vitro. However, the role of the 5′ side of pal (5′-GGAGU) was less clear. Here, we characterized this role using an in vivo SELEX approach. We produced a population of HIV-2 DNA genomes with random sequences within the 5′ side of pal and transfected these into COS-7 cells. Viruses from COS-7 cells were used to infect C8166 permissive cells. After several weeks of serial passage in C8166 cells, surviving viruses were sequenced. On the 5′ side of pal there was a striking convergence toward a GGRGN consensus sequence. Individual clones with consensus and nonconsensus sequences were tested in infectivity and packaging assays. Analysis of individuals that diverged from the consensus sequence showed normal viral RNA and protein synthesis but had replication defects and impaired RNA packaging. These findings clearly indicate that the GGRG motif is essential for viral replication and genomic RNA packaging.


2004 ◽  
Vol 24 (23) ◽  
pp. 10111-10117 ◽  
Author(s):  
Marc A. Schwabish ◽  
Kevin Struhl

ABSTRACT Biochemical experiments indicate that transcriptional elongation by RNA polymerase II (Pol II) is inhibited by nucleosomes and hence requires chromatin-modifying activities. Here, we examine the fate of histones upon passage of elongating Pol II in vivo. Histone density throughout the entire Saccharomyces cerevisiae GAL10 coding region is inversely correlated with Pol II association and transcriptional activity, suggesting that the elongating Pol II machinery efficiently evicts core histones from the DNA. Furthermore, new histones appear to be deposited onto DNA less than 1 min after passage of Pol II. Transcription-dependent deposition of histones requires the FACT complex that travels with elongating Pol II. Our results suggest that Pol II transcription generates a highly dynamic equilibrium of histone eviction and histone deposition and that there is significant histone exchange throughout most of the yeast genome within a single cell cycle.


2000 ◽  
Vol 74 (20) ◽  
pp. 9594-9600 ◽  
Author(s):  
Birgit Schramm ◽  
Michael L. Penn ◽  
Emil H. Palacios ◽  
Robert M. Grant ◽  
Frank Kirchhoff ◽  
...  

ABSTRACT Epidemiological studies have shown that human immunodeficiency virus type 2 (HIV-2) is markedly less pathogenic than HIV-1 in vivo. Individuals infected with HIV-2 exhibit a remarkably slow rate of disease development, and these clinical properties have been attributed presumptively to an “attenuated” phenotype of HIV-2 itself. Here, we investigated the impact of coreceptor usage on the cytopathicity of HIV-2 and compared its pathogenic potential with that of HIV-1 in a unique human lymphoid histoculture model. We found that HIV-2 strains, as well as closely related simian immunodeficiency viruses (SIV), displayed mildly or highly aggressive cytopathic phenotypes depending on their abilities to use the coreceptor CCR5 or CXCR4, respectively. A side-by-side comparison of primary X4 HIV-1 and HIV-2 strains revealed similar, high degrees of cytopathicity induced by both HIV types. Furthermore, we found that HIV-2 coreceptor specificity for CCR5 and CXCR4 determined the target cell population for T-cell depletion in lymphoid tissue. Finally, utilization of the alternate coreceptors BOB and Bonzo did not significantly increase the cytopathic properties of HIV-2. These findings demonstrate that coreceptor preference is a key regulator of target cell specificity and the cytopathic potential of HIV-2, with indistinguishable rules compared with HIV-1. Moreover, HIV-2 strains are not characterized by an intrinsically lower cytopathicity than HIV-1 strains. Therefore, direct cytopathic potential per se does not explain the unique behavior of HIV-2 in people, highlighting that other unknown factors need to be elucidated as the basis for their lesser virulence in vivo.


1992 ◽  
Vol 66 (7) ◽  
pp. 4546-4550 ◽  
Author(s):  
E Boeri ◽  
A Giri ◽  
F Lillo ◽  
G Ferrari ◽  
O E Varnier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document